太赫兹科学与电子信息学报
太赫玆科學與電子信息學報
태혁자과학여전자신식학보
Information and Electronic Engineering
2014年
1期
103-107
,共5页
周亚%王立峰%张思慧%赵刚%张恒璟
週亞%王立峰%張思慧%趙剛%張恆璟
주아%왕립봉%장사혜%조강%장항경
连续运行参考站%高程时间序列%快速傅里叶变换%功率谱
連續運行參攷站%高程時間序列%快速傅裏葉變換%功率譜
련속운행삼고참%고정시간서렬%쾌속부리협변환%공솔보
continuously operating reference stations%elevation time series%Fast Fourier Transform%power spectrum
为提高 GPS 数据的精确度和可靠性,采用最小二乘平差原理、最小二乘平差的3倍单位权中误差限差准则和稳健估计粗差探测的四分位距(IQR)准则,对数据进行粗差探测、剔除、分类处理与比较,并基于 MATLAB 平台采用时间序列拟合模型与谱分析法对我国国际 GNSS 服务组织(IGS)站的高程分量数据进行研究。通过对北京房山站高程数据的研究可以看出,GPS 点位高程分量的时间序列的残差序列近似于正弦函数,周期近似为1年,振幅为0.03,高程分量数据不仅存在很明显的线性趋势,而且存在较明显的周期特性。表明最小二乘原理、误差限差和 IQR 准则可以很好地体现高程数据的线性特征、周期特征及残差谱特征。
為提高 GPS 數據的精確度和可靠性,採用最小二乘平差原理、最小二乘平差的3倍單位權中誤差限差準則和穩健估計粗差探測的四分位距(IQR)準則,對數據進行粗差探測、剔除、分類處理與比較,併基于 MATLAB 平檯採用時間序列擬閤模型與譜分析法對我國國際 GNSS 服務組織(IGS)站的高程分量數據進行研究。通過對北京房山站高程數據的研究可以看齣,GPS 點位高程分量的時間序列的殘差序列近似于正絃函數,週期近似為1年,振幅為0.03,高程分量數據不僅存在很明顯的線性趨勢,而且存在較明顯的週期特性。錶明最小二乘原理、誤差限差和 IQR 準則可以很好地體現高程數據的線性特徵、週期特徵及殘差譜特徵。
위제고 GPS 수거적정학도화가고성,채용최소이승평차원리、최소이승평차적3배단위권중오차한차준칙화은건고계조차탐측적사분위거(IQR)준칙,대수거진행조차탐측、척제、분류처리여비교,병기우 MATLAB 평태채용시간서렬의합모형여보분석법대아국국제 GNSS 복무조직(IGS)참적고정분량수거진행연구。통과대북경방산참고정수거적연구가이간출,GPS 점위고정분량적시간서렬적잔차서렬근사우정현함수,주기근사위1년,진폭위0.03,고정분량수거불부존재흔명현적선성추세,이차존재교명현적주기특성。표명최소이승원리、오차한차화 IQR 준칙가이흔호지체현고정수거적선성특정、주기특정급잔차보특정。
In order to improve the accuracy and reliability of GPS data, a method based on the least squares adjustment principle, the least squares adjustment with three times the unit weight error tolerance criteria and robust estimation of gross error detection Inter Quartile Range(IQR) criteria is proposed to detect, eliminate, classify and compare the data in gross error. And time series fitting model and spectral analysis are used to study the elevation components data of the International GNSS Service(IGS) station in the MATLAB platform. By studying the elevation data of Beijing Fangshan station, we can see that the residuals time series of GPS point elevation component are similar to the sine function, of which the period is approximately 1 year, with an amplitude of 0.03. Elevation components from the image data analysis present an obvious linearity, as well as a periodicity, which demonstrates that the principle of least squares, error tolerance and IQR criteria can well reflect the linearity, periodicity and residual spectral features of the elevation data.