中山大学学报(自然科学版)
中山大學學報(自然科學版)
중산대학학보(자연과학판)
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI
2014年
2期
59-72
,共14页
农产品期货%已实现波动率%预测%结构突变
農產品期貨%已實現波動率%預測%結構突變
농산품기화%이실현파동솔%예측%결구돌변
agricultural commodity futures%realized volatility%forecast%structural breaks
在检验农产品期货已实现波动率序列的结构突变等特征基础上,通过构造不同估计窗口大小的ARFI-MAX-FIGARCH模型及其线性和非线性组合预测模型来预测农产品期货市场的已实现波动率,并采用基于自助法的MCS检验评价和比较各类预测模型的预测性能。研究结果表明:农产品期货的已实现波动率序列都表现出结构突变特征、不对称性和双长记忆性,并且结构突变点都与一连串的宏观面、政策面重大事件冲击有关;对基于不同估计窗口大小的ARFIMAX-FIGARCH模型所得的单项预测值进行时变加权组合通常能够提供更准确的波动率预测值,并且基于NKR的非参数组合预测模型和基于NRLS和SIC的线性组合预测模型是在结构突变条件下预测农产品期货市场波动率尤其有效的方法。
在檢驗農產品期貨已實現波動率序列的結構突變等特徵基礎上,通過構造不同估計窗口大小的ARFI-MAX-FIGARCH模型及其線性和非線性組閤預測模型來預測農產品期貨市場的已實現波動率,併採用基于自助法的MCS檢驗評價和比較各類預測模型的預測性能。研究結果錶明:農產品期貨的已實現波動率序列都錶現齣結構突變特徵、不對稱性和雙長記憶性,併且結構突變點都與一連串的宏觀麵、政策麵重大事件遲擊有關;對基于不同估計窗口大小的ARFIMAX-FIGARCH模型所得的單項預測值進行時變加權組閤通常能夠提供更準確的波動率預測值,併且基于NKR的非參數組閤預測模型和基于NRLS和SIC的線性組閤預測模型是在結構突變條件下預測農產品期貨市場波動率尤其有效的方法。
재검험농산품기화이실현파동솔서렬적결구돌변등특정기출상,통과구조불동고계창구대소적ARFI-MAX-FIGARCH모형급기선성화비선성조합예측모형래예측농산품기화시장적이실현파동솔,병채용기우자조법적MCS검험평개화비교각류예측모형적예측성능。연구결과표명:농산품기화적이실현파동솔서렬도표현출결구돌변특정、불대칭성화쌍장기억성,병차결구돌변점도여일련천적굉관면、정책면중대사건충격유관;대기우불동고계창구대소적ARFIMAX-FIGARCH모형소득적단항예측치진행시변가권조합통상능구제공경준학적파동솔예측치,병차기우NKR적비삼수조합예측모형화기우NRLS화SIC적선성조합예측모형시재결구돌변조건하예측농산품기화시장파동솔우기유효적방법。
This study explore the possibility of structural breaks in daily realized volatility series of agri-cultural commodity futures,and conduct an out-of-sample forecast to explore the effects of structural break on the performance of ARFIMAX-FIGARCH models for the realized volatility forecast,concentra-ting on procedures that utilize a variety of estimation window sizes designed to accommodate the potential structural breaks.The results indicate that the realized volatility of agricultural commodity futures exhibits the properties of structural breaks,asymmetry,and double long memory.In addition,combination fore-casts with time varying weights across individual forecast models estimated with different estimation win-dows performs well,and the nonlinear combination forecasts with weights chosen based on a nonparamet-ric kernel regression and the linear combination forecasts with weights chosen based on non-negative re-stricted least squares and Schwarz Information Criterion appears to be the most effective methods for fore-casting the realized volatility of agricultural commodity futures under structural breaks.