中山大学学报(自然科学版)
中山大學學報(自然科學版)
중산대학학보(자연과학판)
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI
2014年
2期
44-48
,共5页
Caputo分数阶导数%分数阶时滞Logistic方程%Banach不动点定理%存在唯一性
Caputo分數階導數%分數階時滯Logistic方程%Banach不動點定理%存在唯一性
Caputo분수계도수%분수계시체Logistic방정%Banach불동점정리%존재유일성
fractional-order derivative of Caputo%fractional-order logistic equation with delay%Banach's fixed point theorem%existence and uniqueness
基于Banach不动点定理与分数阶微积分的相关性质,首先研究了分数阶时滞广义Logistic方程解的存在唯一性,同时得到解的一致稳定性的充分条件。最后,利用改进的Adams-Bashforth-Moulton 预估-校正算法得到其数值解。
基于Banach不動點定理與分數階微積分的相關性質,首先研究瞭分數階時滯廣義Logistic方程解的存在唯一性,同時得到解的一緻穩定性的充分條件。最後,利用改進的Adams-Bashforth-Moulton 預估-校正算法得到其數值解。
기우Banach불동점정리여분수계미적분적상관성질,수선연구료분수계시체엄의Logistic방정해적존재유일성,동시득도해적일치은정성적충분조건。최후,이용개진적Adams-Bashforth-Moulton 예고-교정산법득도기수치해。
Based on the Banach fixed point theorem and properties of differential and integral calculus of fractional-order,the existence and uniqueness of solutions for the fractional-order generalized Logistic equation with delay are discussed.Some sufficient conditions for uniform stability of solutions are obtained.The numerical solution is obtained by the modified Adams-Bashforth-Moulton predictor-correc-tor scheme.