中国有色金属学报(英文版)
中國有色金屬學報(英文版)
중국유색금속학보(영문판)
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
2014年
2期
380-384
,共5页
谷曼%吴玉程%焦明华%黄新民
穀曼%吳玉程%焦明華%黃新民
곡만%오옥정%초명화%황신민
CuZr/AlN纳米复合材料%粉末冶金%力学性能
CuZr/AlN納米複閤材料%粉末冶金%力學性能
CuZr/AlN납미복합재료%분말야금%역학성능
CuZr/AlN nanocomposites%powder metallurgy%mechanical properties
采用粉末冶金方法制备高强高导铜合金基纳米复合材料(CuZr/AlN)。采用光学显微镜(OM)和高分辨率透射电镜(HRTEM)等方法研究不同烧结工艺对复合材料组织与性能的影响,研究固溶时效对CuZr/AlN力学性能的影响。结果表明:试样的组织致密,晶粒大小在0.2μm左右;试样的布氏硬度随着复压制压力和烧结温度的升高而升高;试样的布氏硬度开始随着锆含量的增加而升高,但当锆颗粒含量大于0.5%时,复合材料的布氏硬度开始降低。试样的抗弯强度随着复压制压力和烧结温度的升高而提高,抗弯强度在锆含量为在0.5%时最大。900°C固溶后的布氏硬度比固溶前的布氏硬度低,试样在500°C和600°C时效后,布氏硬度增加,在700°C发生过时效现象。
採用粉末冶金方法製備高彊高導銅閤金基納米複閤材料(CuZr/AlN)。採用光學顯微鏡(OM)和高分辨率透射電鏡(HRTEM)等方法研究不同燒結工藝對複閤材料組織與性能的影響,研究固溶時效對CuZr/AlN力學性能的影響。結果錶明:試樣的組織緻密,晶粒大小在0.2μm左右;試樣的佈氏硬度隨著複壓製壓力和燒結溫度的升高而升高;試樣的佈氏硬度開始隨著鋯含量的增加而升高,但噹鋯顆粒含量大于0.5%時,複閤材料的佈氏硬度開始降低。試樣的抗彎彊度隨著複壓製壓力和燒結溫度的升高而提高,抗彎彊度在鋯含量為在0.5%時最大。900°C固溶後的佈氏硬度比固溶前的佈氏硬度低,試樣在500°C和600°C時效後,佈氏硬度增加,在700°C髮生過時效現象。
채용분말야금방법제비고강고도동합금기납미복합재료(CuZr/AlN)。채용광학현미경(OM)화고분변솔투사전경(HRTEM)등방법연구불동소결공예대복합재료조직여성능적영향,연구고용시효대CuZr/AlN역학성능적영향。결과표명:시양적조직치밀,정립대소재0.2μm좌우;시양적포씨경도수착복압제압력화소결온도적승고이승고;시양적포씨경도개시수착고함량적증가이승고,단당고과립함량대우0.5%시,복합재료적포씨경도개시강저。시양적항만강도수착복압제압력화소결온도적승고이제고,항만강도재고함량위재0.5%시최대。900°C고용후적포씨경도비고용전적포씨경도저,시양재500°C화600°C시효후,포씨경도증가,재700°C발생과시효현상。
Powder metallurgy method was used to prepare copper alloy nanocomposites (CuZr/AlN) with high strength and conductivity. Optical microscopy, high-resolution transmission electron microscopy and other methods were adopted to study the impact of different sintering technologies on the structural and mechanical properties as well as the impact of solution and aging treatments on the mechanical properties of CuZr/AlN. The result shows that the specimen has a dense structure, and the size of the crystal grain is around 0.2 μm. The Brinell hardness of the specimen increases with the increase in re-pressing pressure and sintering temperature. The Brinell hardness of specimen also increases with the increase in zirconium content. However, above 0.5%(mass fraction) of zirconium content, the Brinell hardness of the nanocomposites is reduced. The buckling strength of the specimens increases with the increase in re-pressing pressure and sintering temperature. The buckling strength is the highest when the zirconium content is 0.5%. The Brinell hardness is lower after solution and aging treatments at 900 °C. The Brinell hardness of the CuZr/AlN series specimen after the aging treatment at 500 °C or 600 °C increases. The specimen was also over aged at 700 °C.