计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2014年
2期
19-24
,共6页
语义网%网络本体语言%列存储%并行计算
語義網%網絡本體語言%列存儲%併行計算
어의망%망락본체어언%렬존저%병행계산
semantic Web%OWL%column-store%parallel computing
随着语义网数据规模的爆炸式增长,海量数据存储和检索面临越来越严峻的挑战,分布式数据库与并行计算已成为其主要解决方案。基于列存储分布式数据库HBase设计了一种多表语义网数据存储模型,实现从OWL本体定义到存储模型的映射。基于OWL本体定义信息对语义网数据实现按类划分,并将三元组存储于主体所属于的类的两张表里,采用MapReduce框架实现并行的数据划分和加载任务,最后在Hadoop集群环境下对方法进行了可行性验证。
隨著語義網數據規模的爆炸式增長,海量數據存儲和檢索麵臨越來越嚴峻的挑戰,分佈式數據庫與併行計算已成為其主要解決方案。基于列存儲分佈式數據庫HBase設計瞭一種多錶語義網數據存儲模型,實現從OWL本體定義到存儲模型的映射。基于OWL本體定義信息對語義網數據實現按類劃分,併將三元組存儲于主體所屬于的類的兩張錶裏,採用MapReduce框架實現併行的數據劃分和加載任務,最後在Hadoop集群環境下對方法進行瞭可行性驗證。
수착어의망수거규모적폭작식증장,해량수거존저화검색면림월래월엄준적도전,분포식수거고여병행계산이성위기주요해결방안。기우렬존저분포식수거고HBase설계료일충다표어의망수거존저모형,실현종OWL본체정의도존저모형적영사。기우OWL본체정의신식대어의망수거실현안류화분,병장삼원조존저우주체소속우적류적량장표리,채용MapReduce광가실현병행적수거화분화가재임무,최후재Hadoop집군배경하대방법진행료가행성험증。
With the rapid growth of semantic Web data scale,mass data storage and retrieval are facing growing challenges,and distributed database and parallel computing has become its major solutions. Design a multi-table storage model to store semantic Web data with HBase which is a distributed database based on column store,as to achieve a mapping from OWL ontology to storage model. And then, divide semantic Web data by class which the subject of its triple belongs to and store the triple into the two HTables of the class. Divide and load data in parallel by MapReduce framework. Finally,verify the feasibility of this method in the Hadoop cluster.