西南师范大学学报(自然科学版)
西南師範大學學報(自然科學版)
서남사범대학학보(자연과학판)
JOURNAL OF SOUTHWEST CHINA NORMAL UNIVERSITY
2014年
3期
7-11
,共5页
陈文强%肖国强%林霄%邱开金
陳文彊%肖國彊%林霄%邱開金
진문강%초국강%림소%구개금
行为识别%时空兴趣点%3D-SITF%属性分类器%贝叶斯网络
行為識彆%時空興趣點%3D-SITF%屬性分類器%貝葉斯網絡
행위식별%시공흥취점%3D-SITF%속성분류기%패협사망락
action recognition%spatio-temporal interest point%3D-SIFT%attribute-classifier%Bayesian Net-work
针对传统行为识别方法仅利用底层特征识别的不足,提出了一种将动作属性与贝叶斯网络相结合的行为识别方法。首先,提取视频中的时空兴趣点及其3 D-SIFT特征描述符,用词袋的方法建立时空词典对视频序列进行表示;然后,利用底层特征训练属性分类器,构造由底层特征到高层特征的映射,将底层特征样本经过属性分类器后得到行为-属性的样本信息,并采用 MAP(最大后验概率)准则学习贝叶斯网络结构,从而建立一种基于属性贝叶斯网络的行为识别模型。实验结果表明该模型能有效地进行行为识别。
針對傳統行為識彆方法僅利用底層特徵識彆的不足,提齣瞭一種將動作屬性與貝葉斯網絡相結閤的行為識彆方法。首先,提取視頻中的時空興趣點及其3 D-SIFT特徵描述符,用詞袋的方法建立時空詞典對視頻序列進行錶示;然後,利用底層特徵訓練屬性分類器,構造由底層特徵到高層特徵的映射,將底層特徵樣本經過屬性分類器後得到行為-屬性的樣本信息,併採用 MAP(最大後驗概率)準則學習貝葉斯網絡結構,從而建立一種基于屬性貝葉斯網絡的行為識彆模型。實驗結果錶明該模型能有效地進行行為識彆。
침대전통행위식별방법부이용저층특정식별적불족,제출료일충장동작속성여패협사망락상결합적행위식별방법。수선,제취시빈중적시공흥취점급기3 D-SIFT특정묘술부,용사대적방법건립시공사전대시빈서렬진행표시;연후,이용저층특정훈련속성분류기,구조유저층특정도고층특정적영사,장저층특정양본경과속성분류기후득도행위-속성적양본신식,병채용 MAP(최대후험개솔)준칙학습패협사망락결구,종이건립일충기우속성패협사망락적행위식별모형。실험결과표명해모형능유효지진행행위식별。
Due to defect of only using low-level features in the traditional recognition methods,this paper proposes a novel method on action recognition by combining Bayesian Network model with high-level se-mantic concept (human action attribute).Firstly,we have extracted spatio-temporal interest points and 3D-SIFT descriptors around each interest point in the videos.Bag of words as low-level features have been used to describe these videos before building the proj ection from low-level features to high-level features through trained attribute-classifiers.Finally,the Attribute-Bayesian network structure has been studied based on Maximum a Posterior Probability (MAP)mechanism.The experimental results illustrate that the model is effective on action recognition.