失效分析与预防
失效分析與預防
실효분석여예방
FAILURE ANALYSIS AND PREVENTION
2014年
1期
30-34
,共5页
故障分类%细化谱%隐马尔科夫模型%时域同步平均
故障分類%細化譜%隱馬爾科伕模型%時域同步平均
고장분류%세화보%은마이과부모형%시역동보평균
faults identification%zoom spectrum%Hidden Markov Model%time-domain synchronous average
为了快速准确地对齿轮故障作出分类,结合隐马尔科夫模型( HMM)高效的模式分类能力,提出了基于细化谱( ZOOMFFT)和隐马尔科夫模型的故障分类方法。采用时域同步平均法从复杂信号中提取目标齿轮的啮合信号作为分析对象,对其进行细化谱分析,提取基频、倍频及其边频带幅值作为特征量输入到HMM中训练和识别,再通过对比对数似然概率值来确定齿轮故障类型。试验结果表明该方法可以有效地对齿轮故障进行分类。
為瞭快速準確地對齒輪故障作齣分類,結閤隱馬爾科伕模型( HMM)高效的模式分類能力,提齣瞭基于細化譜( ZOOMFFT)和隱馬爾科伕模型的故障分類方法。採用時域同步平均法從複雜信號中提取目標齒輪的齧閤信號作為分析對象,對其進行細化譜分析,提取基頻、倍頻及其邊頻帶幅值作為特徵量輸入到HMM中訓練和識彆,再通過對比對數似然概率值來確定齒輪故障類型。試驗結果錶明該方法可以有效地對齒輪故障進行分類。
위료쾌속준학지대치륜고장작출분류,결합은마이과부모형( HMM)고효적모식분류능력,제출료기우세화보( ZOOMFFT)화은마이과부모형적고장분류방법。채용시역동보평균법종복잡신호중제취목표치륜적교합신호작위분석대상,대기진행세화보분석,제취기빈、배빈급기변빈대폭치작위특정량수입도HMM중훈련화식별,재통과대비대수사연개솔치래학정치륜고장류형。시험결과표명해방법가이유효지대치륜고장진행분류。
In order to quickly and accurately classify gear failure, combined with pattern classification capabilities of Hidden Markov model ( HMM) , a novel fault diagnosis approach based on the Zoom Spectrum and Hidden Morkov Model is proposed. First, time-domain synchronous average signal of an interested gear is extracted from original signal and zoom spectrum is analyzed using the TSA signal. Then, the side-frequency bands of fundamental frequency and its harmonious amplitude are processed as a feature vector, which was proved sensitive in fault diagnosis in previous research. The HMMs are trained by maximizing the probability of given feature vectors and the gear failure types are identified by comparing the logarithmic likelihood probability value. Finally, the performance of the fault diagnosis scheme is validated using experimental data collected from gearbox.