浙江大学学报(农业与生命科学版)
浙江大學學報(農業與生命科學版)
절강대학학보(농업여생명과학판)
JOURNAL OF ZHEJIANG UNIVERSITY(AGRICULTURE & LIFE SCIENCES)
2014年
2期
133-140
,共8页
李倩延%卢向锋%张鹏程%孙玲艳%刘于%马晓航
李倩延%盧嚮鋒%張鵬程%孫玲豔%劉于%馬曉航
리천연%로향봉%장붕정%손령염%류우%마효항
氧化葡萄糖酸杆菌%膜结合葡萄糖脱氢酶%基因敲除%葡萄糖代谢
氧化葡萄糖痠桿菌%膜結閤葡萄糖脫氫酶%基因敲除%葡萄糖代謝
양화포도당산간균%막결합포도당탈경매%기인고제%포도당대사
Gluconobacter oxydans%membrane-bound glucose dehydrogenase%gene knockout%glucose metabolism
研究氧化葡萄糖酸杆菌(Gluconobacter oxydans)对细胞内葡萄糖代谢除直接氧化途径外可能存在的其他途径.以 G.oxydans DHA3-9菌株为研究对象,利用同源重组构建 G.oxydans DHA3-9膜结合的葡萄糖脱氢酶(membrane-bound glucose dehydrogenase,mGDH)基因敲除的突变株,以阻断该菌的葡萄糖直接氧化途径,研究其在葡萄糖培养基中的生长速率、葡萄糖降解与葡萄糖酸转化、代谢产物成分等主要生理生化特性的变化.结果表明:实验成功地筛选到1株 G.oxydans mgdh 突变菌,该菌丧失了90%以上利用葡萄糖转化为葡萄糖酸的能力,其二羟基丙酮(dihydroxyacetone,DHA)转化量4倍于野生菌;同时,在该突变菌代谢产物中检测出丙酮酸和乙酸,且乙酸对野生菌和突变菌的生长抑制差异极显著.表明葡萄糖在 G.oxydans DHA3-9△mgdh 菌株细胞内依赖的代谢途径为糖酵解途径,而非2-酮-3-脱氧-6-磷酸葡萄糖酸裂解途径或磷酸戊糖途径.其中,丙酮酸作为糖酵解途径产物通过丙酮酸脱羧酶和乙醛脱氢酶转化为乙酸,而乙酸积累过多将对菌株生长产生抑制.
研究氧化葡萄糖痠桿菌(Gluconobacter oxydans)對細胞內葡萄糖代謝除直接氧化途徑外可能存在的其他途徑.以 G.oxydans DHA3-9菌株為研究對象,利用同源重組構建 G.oxydans DHA3-9膜結閤的葡萄糖脫氫酶(membrane-bound glucose dehydrogenase,mGDH)基因敲除的突變株,以阻斷該菌的葡萄糖直接氧化途徑,研究其在葡萄糖培養基中的生長速率、葡萄糖降解與葡萄糖痠轉化、代謝產物成分等主要生理生化特性的變化.結果錶明:實驗成功地篩選到1株 G.oxydans mgdh 突變菌,該菌喪失瞭90%以上利用葡萄糖轉化為葡萄糖痠的能力,其二羥基丙酮(dihydroxyacetone,DHA)轉化量4倍于野生菌;同時,在該突變菌代謝產物中檢測齣丙酮痠和乙痠,且乙痠對野生菌和突變菌的生長抑製差異極顯著.錶明葡萄糖在 G.oxydans DHA3-9△mgdh 菌株細胞內依賴的代謝途徑為糖酵解途徑,而非2-酮-3-脫氧-6-燐痠葡萄糖痠裂解途徑或燐痠戊糖途徑.其中,丙酮痠作為糖酵解途徑產物通過丙酮痠脫羧酶和乙醛脫氫酶轉化為乙痠,而乙痠積纍過多將對菌株生長產生抑製.
연구양화포도당산간균(Gluconobacter oxydans)대세포내포도당대사제직접양화도경외가능존재적기타도경.이 G.oxydans DHA3-9균주위연구대상,이용동원중조구건 G.oxydans DHA3-9막결합적포도당탈경매(membrane-bound glucose dehydrogenase,mGDH)기인고제적돌변주,이조단해균적포도당직접양화도경,연구기재포도당배양기중적생장속솔、포도당강해여포도당산전화、대사산물성분등주요생리생화특성적변화.결과표명:실험성공지사선도1주 G.oxydans mgdh 돌변균,해균상실료90%이상이용포도당전화위포도당산적능력,기이간기병동(dihydroxyacetone,DHA)전화량4배우야생균;동시,재해돌변균대사산물중검측출병동산화을산,차을산대야생균화돌변균적생장억제차이겁현저.표명포도당재 G.oxydans DHA3-9△mgdh 균주세포내의뢰적대사도경위당효해도경,이비2-동-3-탈양-6-린산포도당산렬해도경혹린산무당도경.기중,병동산작위당효해도경산물통과병동산탈최매화을철탈경매전화위을산,이을산적루과다장대균주생장산생억제.
Summary Gluconobacter oxydans is widely used in industrial application for its dehydrogenase system locating on cell membrane.These dehydrogenases have a character to oxidize sugars and sugar alcohols incompletely. There are two potential pathways known for glucose oxidization in G.oxydans :More than 90% of glucose is transformed into gluconate in the periplasmic space;only a minority of glucose(about 5%)is phosphorylated and taken into functional central metabolic pathways such as Entner-Doudoroff pathway(EDP)and pentose phosphate pathway (PPP) in the cytoplasmic compartment.In previous study,the Embden-Meyerhof-Parnas pathway (EMP) was found inactive in G.oxydans due to its lack of phosphofructokinase. <br> In this study,a G.oxydans strain named DHA3-9 was screened which produced dihydroxyacetone (DHA) during glucose degradation.But DHA was not a product in EDP or PPP.A mutant strain of G.oxydans DHA3-9 lacking of glucose dehydrogenase in cell membrane was constructed to study the possibility of other pathway of glucose metabolism in G.oxydans . <br> A mgdh gene-disrupted mutant of G. oxydans DHA3-9 was constructed by the way of homologous recombination and its characteristic changes of the cells growth on glucose,glucose degradation,gluconate transformation,intermediate products and growth inhibition on acetate were studied. <br> The results indicated that the growth of mutant strain on glucose showed an obvious delay and pH dropped much slower than that of wild type.The mutant lost most of its ability of glucose degradation and produced little gluconate.Instead,DHA formation of the mutant was recorded four times as that of wild type.Pyruvate and acetate were detected in the products of mutant whereas none of such products were found in wild type culture. Under the condition with glucose as the sole carbon source,50 mmol/L acetate completely inhibited the growth of mutant,whereas this effect was remarkably low on wild type. <br> These results prove that in G. oxydans DHA3-9 mutant strain, glucose is utilized in cytoplasmic compartment primarily through EMP and acetate can be produced by activities of pyruvate decarboxylase and acetaldehyde dehydrogenase.