食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2014年
2期
516-527
,共12页
徐文杰%刘欢%陈东清%熊善柏
徐文傑%劉歡%陳東清%熊善柏
서문걸%류환%진동청%웅선백
近红外光谱%鲢鱼%营养成分%偏最小二乘%主成分分析%人工神经网络
近紅外光譜%鰱魚%營養成分%偏最小二乘%主成分分析%人工神經網絡
근홍외광보%련어%영양성분%편최소이승%주성분분석%인공신경망락
near infrared spectroscopy%silver carp%nutrient%partial least square%principal component analysis%artificial neural network
目的:通过采集鲢鱼的近红外光谱数据和测定鱼肉营养成分含量探索鲢鱼营养成分的快速分析方法。方法采集254个鲢鱼鱼肉样品的近红外光谱数据,经过多元散射校正、正交信号校正、数据标准化等20种方法预处理,在1000~1799 nm光谱范围内,结合化学实测值分别采用偏最小二乘法、主成分分析和BP人工神经网络技术、偏最小二乘法和BP人工神经网络技术建立鲢鱼营养成分近红外定量模型。结果鲢鱼鱼肉粗蛋白含量为12.05%~19.05%,粗脂肪含量为0.24%~5.27%,水分含量为72.62%~80.58%,灰分含量为0.46%~1.50%,数据范围较大,可满足建模要求。在3种建模方法中,近红外光谱数据结合偏最小二乘法建立的鲢鱼营养成分模型最优,所得的粗蛋白、粗脂肪、水分和灰分的近红外定量模型的相关系数分别为0.9969、0.9925、0.9831和0.9976。结论采用近红外光谱数据和偏最小二乘法建立的模型具有较好的预测能力,能较为准确、快速地分析出鲢鱼鱼肉粗蛋白、粗脂肪、水分和灰分的含量。
目的:通過採集鰱魚的近紅外光譜數據和測定魚肉營養成分含量探索鰱魚營養成分的快速分析方法。方法採集254箇鰱魚魚肉樣品的近紅外光譜數據,經過多元散射校正、正交信號校正、數據標準化等20種方法預處理,在1000~1799 nm光譜範圍內,結閤化學實測值分彆採用偏最小二乘法、主成分分析和BP人工神經網絡技術、偏最小二乘法和BP人工神經網絡技術建立鰱魚營養成分近紅外定量模型。結果鰱魚魚肉粗蛋白含量為12.05%~19.05%,粗脂肪含量為0.24%~5.27%,水分含量為72.62%~80.58%,灰分含量為0.46%~1.50%,數據範圍較大,可滿足建模要求。在3種建模方法中,近紅外光譜數據結閤偏最小二乘法建立的鰱魚營養成分模型最優,所得的粗蛋白、粗脂肪、水分和灰分的近紅外定量模型的相關繫數分彆為0.9969、0.9925、0.9831和0.9976。結論採用近紅外光譜數據和偏最小二乘法建立的模型具有較好的預測能力,能較為準確、快速地分析齣鰱魚魚肉粗蛋白、粗脂肪、水分和灰分的含量。
목적:통과채집련어적근홍외광보수거화측정어육영양성분함량탐색련어영양성분적쾌속분석방법。방법채집254개련어어육양품적근홍외광보수거,경과다원산사교정、정교신호교정、수거표준화등20충방법예처리,재1000~1799 nm광보범위내,결합화학실측치분별채용편최소이승법、주성분분석화BP인공신경망락기술、편최소이승법화BP인공신경망락기술건립련어영양성분근홍외정량모형。결과련어어육조단백함량위12.05%~19.05%,조지방함량위0.24%~5.27%,수분함량위72.62%~80.58%,회분함량위0.46%~1.50%,수거범위교대,가만족건모요구。재3충건모방법중,근홍외광보수거결합편최소이승법건립적련어영양성분모형최우,소득적조단백、조지방、수분화회분적근홍외정량모형적상관계수분별위0.9969、0.9925、0.9831화0.9976。결론채용근홍외광보수거화편최소이승법건립적모형구유교호적예측능력,능교위준학、쾌속지분석출련어어육조단백、조지방、수분화회분적함량。
Objective To explore a rapid analysis method for nutrient of silver carp through collecting near infrared spectroscopy and determining nutrient. Methods The near infrared (NIR) spectra of 254 silver carp samples were collected. The diffuse reflectance spectra of samples were performed with different spectral pretreatments, such as multiplicative scatter correction (MSC), orthogonal signal correction (OSC), and standardization (S). The near infrared quantitative analysis models were obtained by partial least square (PLS) regression, principal component analysis (PCA) combined with back propagation artificial neural network (BP-ANN), partial least square combined with back propagation artificial neural network with 1000~1799 nm, respectively. Results The results showed that the protein content of silver carp ranged from 12.05% to 19.05%, the fat content from 0.24% to 5.27%, the moisture content from 72.62% to 80.58%, and the ash content from 0.46% to 1.50%. The nutrient measured values met the modeling requirements. The analysis models obtained by PLS were the best. The correlation coefficients of the models were 0.9969, 0.9925, 0.9831 and 0.9976 for protein, fat, moisture and ash content, respectively. Conclusion The results indicated that the models exhibited an acceptable fitting accuracy and predictive ability of analysis of protein, fat, moisture and ash content of silver carp by NIRS.