常熟理工学院学报
常熟理工學院學報
상숙리공학원학보
JOURNAL OF CHANGSHU INSTITUTE OF TECHNOLOGY
2014年
2期
38-41
,共4页
代雨杭%胡平平%苏新卫
代雨杭%鬍平平%囌新衛
대우항%호평평%소신위
分数次微分方程%不动点定理%无界解
分數次微分方程%不動點定理%無界解
분수차미분방정%불동점정리%무계해
fractional differential equation%fixed point theorem%unbounded solution
讨论了无穷区间上的分数次微分方程的边值问题,应用Schauder不动点定理,证明非线性分数次微分方程边值问题解的存在性,合适的Banach空间的选取允许解是无界的。
討論瞭無窮區間上的分數次微分方程的邊值問題,應用Schauder不動點定理,證明非線性分數次微分方程邊值問題解的存在性,閤適的Banach空間的選取允許解是無界的。
토론료무궁구간상적분수차미분방정적변치문제,응용Schauder불동점정리,증명비선성분수차미분방정변치문제해적존재성,합괄적Banach공간적선취윤허해시무계적。
This paper deals with a boundary value problem of nonlinear fractional differential equation on infi-nite interval. By means of Schayder fixed point theorem, the existence result of solutions is proved. A suitable Banach space is introduced so that the solution that was obtained may be unbounded.