仲恺农业工程学院学报
仲愷農業工程學院學報
중개농업공정학원학보
JOURNAL OF ZHONGKAI UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
2014年
3期
34-40
,共7页
李嘉%李琳%张勇军%李钦豪
李嘉%李琳%張勇軍%李欽豪
리가%리림%장용군%리흠호
太阳%月球%地球%螺线%周期运动
太暘%月毬%地毬%螺線%週期運動
태양%월구%지구%라선%주기운동
the sun%the moon%the earth%undulation spiral%period motion
为研究太阳系天体相对地球某点的运动规律,首先建立了地心黄道坐标系,并将太阳绕地球的圆周运动转换为太阳绕地心的余弦波动,同时将此余弦波动作为标准余弦曲线.将太阳绕地球的运动分解为波动和“自转”,并分双波动坐标轴和波动-螺面坐标轴分析,推导出太阳对地球赤道某点的波动式螺线运动轨迹方程,同时进行计算机模拟与分析,得到了太阳对地球某纬度某点的波动式螺线运动轨迹方程.以此类推,推导出月球对地球某点的波动式螺线运动轨迹方程,并分别进行计算机模拟与分析.结果表明,太阳、月球相对于地球某点的运动轨迹为与幅值与角度相关的波动式螺线,向x轴方向等速传播,并且:①在双波动坐标轴下分析,太阳、月球在z轴上的波动极其细微,可以近似为经典力学中的平面波动;螺线呈周期性变化,且在坐标3个平面上的投影均为周期性波动函数;整体传播呈现薄膜状波动面;月球运动变化方向复杂.②在波动-螺面坐标轴下分析,x轴与z轴数量级可比拟,z轴与x轴最大幅值之比约等于2/5;螺线波动是由起始点沿阿基米德螺线绕余弦波动面的周期性传播,螺线旋转角速度同地球自转角速度,旋转线速度与太阳、月球1年中波动的周期数相关;整体传播呈现薄膜状波动面.③太阳、月球相对于地球上某纬度c某点与赤道某点,在波动-螺面坐标轴下分析,螺线方程不变,在双波动坐标轴下分析,将太阳、月球相对于赤道某点的螺线参数方程的z轴表达式中的cos (0.37π)换为cos (0.37π+c)得到相对于某纬度c某点的螺线参数方程.
為研究太暘繫天體相對地毬某點的運動規律,首先建立瞭地心黃道坐標繫,併將太暘繞地毬的圓週運動轉換為太暘繞地心的餘絃波動,同時將此餘絃波動作為標準餘絃麯線.將太暘繞地毬的運動分解為波動和“自轉”,併分雙波動坐標軸和波動-螺麵坐標軸分析,推導齣太暘對地毬赤道某點的波動式螺線運動軌跡方程,同時進行計算機模擬與分析,得到瞭太暘對地毬某緯度某點的波動式螺線運動軌跡方程.以此類推,推導齣月毬對地毬某點的波動式螺線運動軌跡方程,併分彆進行計算機模擬與分析.結果錶明,太暘、月毬相對于地毬某點的運動軌跡為與幅值與角度相關的波動式螺線,嚮x軸方嚮等速傳播,併且:①在雙波動坐標軸下分析,太暘、月毬在z軸上的波動極其細微,可以近似為經典力學中的平麵波動;螺線呈週期性變化,且在坐標3箇平麵上的投影均為週期性波動函數;整體傳播呈現薄膜狀波動麵;月毬運動變化方嚮複雜.②在波動-螺麵坐標軸下分析,x軸與z軸數量級可比擬,z軸與x軸最大幅值之比約等于2/5;螺線波動是由起始點沿阿基米德螺線繞餘絃波動麵的週期性傳播,螺線鏇轉角速度同地毬自轉角速度,鏇轉線速度與太暘、月毬1年中波動的週期數相關;整體傳播呈現薄膜狀波動麵.③太暘、月毬相對于地毬上某緯度c某點與赤道某點,在波動-螺麵坐標軸下分析,螺線方程不變,在雙波動坐標軸下分析,將太暘、月毬相對于赤道某點的螺線參數方程的z軸錶達式中的cos (0.37π)換為cos (0.37π+c)得到相對于某緯度c某點的螺線參數方程.
위연구태양계천체상대지구모점적운동규률,수선건립료지심황도좌표계,병장태양요지구적원주운동전환위태양요지심적여현파동,동시장차여현파동작위표준여현곡선.장태양요지구적운동분해위파동화“자전”,병분쌍파동좌표축화파동-라면좌표축분석,추도출태양대지구적도모점적파동식라선운동궤적방정,동시진행계산궤모의여분석,득도료태양대지구모위도모점적파동식라선운동궤적방정.이차유추,추도출월구대지구모점적파동식라선운동궤적방정,병분별진행계산궤모의여분석.결과표명,태양、월구상대우지구모점적운동궤적위여폭치여각도상관적파동식라선,향x축방향등속전파,병차:①재쌍파동좌표축하분석,태양、월구재z축상적파동겁기세미,가이근사위경전역학중적평면파동;라선정주기성변화,차재좌표3개평면상적투영균위주기성파동함수;정체전파정현박막상파동면;월구운동변화방향복잡.②재파동-라면좌표축하분석,x축여z축수량급가비의,z축여x축최대폭치지비약등우2/5;라선파동시유기시점연아기미덕라선요여현파동면적주기성전파,라선선전각속도동지구자전각속도,선전선속도여태양、월구1년중파동적주기수상관;정체전파정현박막상파동면.③태양、월구상대우지구상모위도c모점여적도모점,재파동-라면좌표축하분석,라선방정불변,재쌍파동좌표축하분석,장태양、월구상대우적도모점적라선삼수방정적z축표체식중적cos (0.37π)환위cos (0.37π+c)득도상대우모위도c모점적라선삼수방정.
In order to study the motion of celestial bodies in solar system relative to a certain point on the Earth, a geocentric ecliptic coordinate axis was built at first , and the sun's circling motion around the earth transfered into the sun's cosine undulation around geocentric , which was used as standardize cosine curve.In order to derive the locus equation of undulating spiral motion about the sun relative to a certain point on terrestrial equator , and to complete computer simulation and analysis , the sun's motion around the earth was decomposed into undulation and “rotation”, and the coordinate axis was relatively decom-posed into double-undulation and undulation-spiral surface coordinate axis .At the same time, it was easy to obtain the locus equation of undulating spiral motion about the sun relative to a certain point on any lat -itude .It was possible to derive the locus equation of undulating spiral motion about any solar system body relative to any point on the earth and to complete computer simulation and analysis .The result indicated that the trajectory about the sun and the moon relative to any point on the earth was undulation spiral re-lated to its amplitude and angle .Besides its constant spread toward x axis, the property goes as:a) ac-cording to the analysis under double-undulation coordinate axis , the undulation of the sun and the moon on z axis was so faint that it can be regarded as plane undulation in classical mechanics; the spiral ap-pears periodical change and its projection on the three coordinate planes were all periodical wave func -tion;the entire spread appears thin film fluctuation;the direction of the moon's motion was complicated . b) according to the analysis under the undulation-spiral surface coordinate axis , x axis order of magni-tudes is parallel to the one of z axis, and the ratio of zaxis maximum to x axis was approximately 2/5;spi-ral undulation was a periodical spread around cosine fluctuation plane , which moved from starting point and along Archimedean spiral , and the rotation speed of spiral was related to the undulation period of the sun and the moon;the entire spread appears thin film undulating plane .c) As to the sun and the moon relative to a certain point on a certain latitude c or on equator , under the undulation-spiral surface coordi-nate axis , the spiral equations were the same .However , under double-undulation coordinate axis , the spiral parameter equation of the sun and the moon , relative to a certain point on latitude c was concluded by replacing amplitude of z of its spiral parameter equation relative a certain point on latitude as cos (0.37π) to cos (0.37π+c) .