模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
2期
97-102
,共6页
薛晖%陈松灿%刘洁%黄继建
薛暉%陳鬆燦%劉潔%黃繼建
설휘%진송찬%류길%황계건
机器学习%跨视图约束%半监督分类%多视图学习
機器學習%跨視圖約束%半鑑督分類%多視圖學習
궤기학습%과시도약속%반감독분류%다시도학습
Machine Learning%Cross-View Constraint%Semi-Supervised Classification%Multi-View Learning
考虑一种多视图数据配对形式---跨视图约束,从而推广单视图学习中的成对约束。利用不同视图间数据对是否属于同一类的弱化约束信息,代替严格的配对约束,不仅涵盖原有的一一配对,而且能推广到完全无配对的情况。提出一种基于跨视图约束的多视图分类方法,该方法不仅能深入挖掘跨视图约束中隐藏的判别信息,而且能同时利用数据的结构信息。实验结果验证该方法的有效性。
攷慮一種多視圖數據配對形式---跨視圖約束,從而推廣單視圖學習中的成對約束。利用不同視圖間數據對是否屬于同一類的弱化約束信息,代替嚴格的配對約束,不僅涵蓋原有的一一配對,而且能推廣到完全無配對的情況。提齣一種基于跨視圖約束的多視圖分類方法,該方法不僅能深入挖掘跨視圖約束中隱藏的判彆信息,而且能同時利用數據的結構信息。實驗結果驗證該方法的有效性。
고필일충다시도수거배대형식---과시도약속,종이추엄단시도학습중적성대약속。이용불동시도간수거대시부속우동일류적약화약속신식,대체엄격적배대약속,불부함개원유적일일배대,이차능추엄도완전무배대적정황。제출일충기우과시도약속적다시도분류방법,해방법불부능심입알굴과시도약속중은장적판별신식,이차능동시이용수거적결구신식。실험결과험증해방법적유효성。
A multi-view paired model, cross-view constraint, is taken into account and thus the pairwise constraints are extended in single-view learning. Instead of the strict paired constraints, the weaker constraint information is used, i. e. whether the data pairs between different views belong to the same class or not. Therefore, the cross-view constraints can not only include the totally paired constraints, but also be generalized to the case that the data are unpaired completely. Based on the cross-view constraints, a multi-view classification method is proposed. The proposed method can deeply mine the potential discriminative information in cross-view constraints and utilize the structural information of the data pairs as well. Experimental results demonstrate the effectiveness of the proposed method.