大连理工大学学报
大連理工大學學報
대련리공대학학보
JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY
2014年
2期
228-232
,共5页
SVM%认知网络%频谱感知%循环谱%楼宇室内
SVM%認知網絡%頻譜感知%循環譜%樓宇室內
SVM%인지망락%빈보감지%순배보%루우실내
support vector machine (SVM)%cognitive network%spectrum sensing%cyclic spectrum%building indoors
针对目前楼宇室内环境中,信道多径衰落和噪声不确定性等低信噪比情况下主用户信号检测性能较低的问题,提出了一种基于支持向量机(SVM)的主用户信号频谱感知算法。该算法融合了循环平稳特征检测和 SVM算法的特点,对信号循环平稳特征参数进行特征提取,作为训练样本和待测样本,再采用 SVM算法分别对有无主用户情况下的信号进行分类检测。仿真实验表明与人工神经网络(ANN)和最大最小特征值法(MME)相比较,所提算法可在低信噪比情况下,有效地实现对主用户信号的感知,具有较好的稳健性。
針對目前樓宇室內環境中,信道多徑衰落和譟聲不確定性等低信譟比情況下主用戶信號檢測性能較低的問題,提齣瞭一種基于支持嚮量機(SVM)的主用戶信號頻譜感知算法。該算法融閤瞭循環平穩特徵檢測和 SVM算法的特點,對信號循環平穩特徵參數進行特徵提取,作為訓練樣本和待測樣本,再採用 SVM算法分彆對有無主用戶情況下的信號進行分類檢測。倣真實驗錶明與人工神經網絡(ANN)和最大最小特徵值法(MME)相比較,所提算法可在低信譟比情況下,有效地實現對主用戶信號的感知,具有較好的穩健性。
침대목전루우실내배경중,신도다경쇠락화조성불학정성등저신조비정황하주용호신호검측성능교저적문제,제출료일충기우지지향량궤(SVM)적주용호신호빈보감지산법。해산법융합료순배평은특정검측화 SVM산법적특점,대신호순배평은특정삼수진행특정제취,작위훈련양본화대측양본,재채용 SVM산법분별대유무주용호정황하적신호진행분류검측。방진실험표명여인공신경망락(ANN)화최대최소특정치법(MME)상비교,소제산법가재저신조비정황하,유효지실현대주용호신호적감지,구유교호적은건성。
According to the low accuracy rate of the primary user signal detection in the building indoor environment at the situation of low SNR, such as channel multipath fading and noise uncertainty,etc.,a method based on support vector machine (SVM)for the primary user spectrum sensing is proposed. The method combines cyclostationary characteristic method and SVM. Characteristics of cyclostationary characteristic parameters are extracted from signals as training samples and testing samples.Then,signals with and without the primary user are classificatorily detected by SVM.The results of simulation experiments show that the proposed algorithm achieves a good spectrum sensing and robustness compared with artificial neural network (ANN)and maximum-minimum eigenvalue (MME)at low SNR.