岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
3期
659-665
,共7页
刘红岩%邓正定%王新生%张吉宏%张力民
劉紅巖%鄧正定%王新生%張吉宏%張力民
류홍암%산정정%왕신생%장길굉%장력민
分离式Hopkinson压杆%节理岩体%节理性质%动态强度%破坏模式%相似材料试验
分離式Hopkinson壓桿%節理巖體%節理性質%動態彊度%破壞模式%相似材料試驗
분리식Hopkinson압간%절리암체%절이성질%동태강도%파배모식%상사재료시험
split Hopkinson pressure bar (SHPB)%jointed rock mass%properties of joint%dynamic strength%failure mode%similar material test
采用相似材料模型试验对不同节理倾角、节理贯通度、节理条数、载荷应变率、节理充填物厚度、节理充填物类型及试件长径比等7种工况下的节理岩体动态强度及破坏模式进行了分离式Hopkinson压杆(SHPB)试验研究。结果表明:节理岩体动态破坏模式及强度与节理构造形态密切相关。对于单节理岩体,其强度及破坏特征在很大程度上受节理倾角控制,节理倾角0°、90°试件动强度分别为完整试件的90%和71%,且其破坏形式均为张拉破坏;倾角60°试件动强度几乎为0;倾角30°、45°试件的动强度分别为完整试件的50%和18%,且其破坏以剪切破坏为主,兼有张拉破坏。中心1/4、1/2、4/5及全贯通节理试件的峰值强度分别为完整试件的95%、74%、28%和17%,即随节理贯通度增加,试件动强度逐渐降低。含1~3条节理的试件动强度分别为完整试件的54%、23%和10%,即随节理条数增加,试件动强度随之有较大幅度降低,但节理条数的增加并没有改变其破坏模式。随着节理充填物厚度增加及节理充填物强度降低,试件强度依次递减,但破坏模式并没有改变。完整试件和节理试件的动强度均随着载荷应变率的增加而变大,且前者对载荷应变率的敏感性要远远高于后者,相应地试件的破坏模式也变得更加复杂。两类试件的动强度均随着试件长径比的增加先增大后减小,即存在一个最佳长径比。
採用相似材料模型試驗對不同節理傾角、節理貫通度、節理條數、載荷應變率、節理充填物厚度、節理充填物類型及試件長徑比等7種工況下的節理巖體動態彊度及破壞模式進行瞭分離式Hopkinson壓桿(SHPB)試驗研究。結果錶明:節理巖體動態破壞模式及彊度與節理構造形態密切相關。對于單節理巖體,其彊度及破壞特徵在很大程度上受節理傾角控製,節理傾角0°、90°試件動彊度分彆為完整試件的90%和71%,且其破壞形式均為張拉破壞;傾角60°試件動彊度幾乎為0;傾角30°、45°試件的動彊度分彆為完整試件的50%和18%,且其破壞以剪切破壞為主,兼有張拉破壞。中心1/4、1/2、4/5及全貫通節理試件的峰值彊度分彆為完整試件的95%、74%、28%和17%,即隨節理貫通度增加,試件動彊度逐漸降低。含1~3條節理的試件動彊度分彆為完整試件的54%、23%和10%,即隨節理條數增加,試件動彊度隨之有較大幅度降低,但節理條數的增加併沒有改變其破壞模式。隨著節理充填物厚度增加及節理充填物彊度降低,試件彊度依次遞減,但破壞模式併沒有改變。完整試件和節理試件的動彊度均隨著載荷應變率的增加而變大,且前者對載荷應變率的敏感性要遠遠高于後者,相應地試件的破壞模式也變得更加複雜。兩類試件的動彊度均隨著試件長徑比的增加先增大後減小,即存在一箇最佳長徑比。
채용상사재료모형시험대불동절리경각、절리관통도、절리조수、재하응변솔、절리충전물후도、절리충전물류형급시건장경비등7충공황하적절리암체동태강도급파배모식진행료분리식Hopkinson압간(SHPB)시험연구。결과표명:절리암체동태파배모식급강도여절리구조형태밀절상관。대우단절리암체,기강도급파배특정재흔대정도상수절리경각공제,절리경각0°、90°시건동강도분별위완정시건적90%화71%,차기파배형식균위장랍파배;경각60°시건동강도궤호위0;경각30°、45°시건적동강도분별위완정시건적50%화18%,차기파배이전절파배위주,겸유장랍파배。중심1/4、1/2、4/5급전관통절리시건적봉치강도분별위완정시건적95%、74%、28%화17%,즉수절리관통도증가,시건동강도축점강저。함1~3조절리적시건동강도분별위완정시건적54%、23%화10%,즉수절리조수증가,시건동강도수지유교대폭도강저,단절리조수적증가병몰유개변기파배모식。수착절리충전물후도증가급절리충전물강도강저,시건강도의차체감,단파배모식병몰유개변。완정시건화절리시건적동강도균수착재하응변솔적증가이변대,차전자대재하응변솔적민감성요원원고우후자,상응지시건적파배모식야변득경가복잡。량류시건적동강도균수착시건장경비적증가선증대후감소,즉존재일개최가장경비。
Failure modes of jointed rock mass with different joint dip angles, joint discontinuity degrees, joint sets, load strain ratios, joint filling thicknesses, joint filling types and slenderness ratios under split Hopkinson pressure bar(SHPB) tests are studied by means of similar material model tests. The results show that failure modes and dynamic strength of jointed rock mass are much related to joint configuration. For rock mass with single joint, its strength and failure characteristics are greatly controlled by the joint dip angle. The dynamic strength of the specimens with joint dip angles of 0° and 90°, whose failure modes are both tensile failure, is 90%and 71%of that of intact one, respectively. The dynamic strength of the specimen with joint dip angle of 60° is nearly zero. The dynamic strength of the specimens with joint dip angles of 30° and 45°, whose failure modes are mainly shear failure with partly tensile failure, is 50%and 18%of that of intact one, respectively. The peak strength of the specimens with 1/4, 1/2, 4/5 and 1 joint center continuity degree is 95%, 74%, 28%and 17%of that of intact one, respectively. With increase of joint discontinuity degree, the dynamic strength of specimen decreases. The dynamic strength of the specimens with 1, 2 and 3 groups of joints is 54%, 23%and 10%of that of intact one, respectively. Namely, with increase of joint group, the dynamic strength of specimen decreases greatly;but its failure mode does not change. With increase of joint filling thickness and strength reduction of joint fillings, the dynamic strength of specimen decreases gradually;but its failure mode does not change. The dynamic strength of the intact and jointed specimens both increase with increasing of load strain ratio;and the sensitivity to load strain ratio of the former is much higher than that of the latter, whose failure mode becomes more complicated accordingly. The dynamic strength of these two kinds of specimens both first increase then decrease with the slenderness ratio;that is to say, there exists a best slenderness ratio.