岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
3期
647-652
,共6页
黄土%扩底掏挖基础%归一化荷载-位移曲线%抗拔%双曲线模型
黃土%擴底掏挖基礎%歸一化荷載-位移麯線%抗拔%雙麯線模型
황토%확저도알기출%귀일화하재-위이곡선%항발%쌍곡선모형
loess%belled piers%normalized load-displacement curve%uplift%hyperbolic model
随着西部电网建设的发展,越来越多的架空输电线路需经过黄土地区。输电线路杆塔基础抗拔能力通常是其设计控制条件。掏挖扩底基础因具有较好的抗拔承载性能而在黄土地区输电线路工程中得到广泛应用。根据甘肃黄土地区2个试验场地12个掏挖扩底基础实测上拔荷载位-移曲线,分别采用 Chin 双曲线模型以及初始直线斜率法、双直线交点法和 L1-L2方法确定了基础抗拔极限承载力及其对应位移,得到了抗拔基础归一化荷载-位移曲线,采用归一化荷载-位移双曲线模型对试验结果进行拟合,给出了不同保证概率下基础荷载-位移预测曲线。结果表明:初始直线斜率法得到的承载力最小,双直线交点法次之,Chin 数学模型法最大,宜采用 L1-L2方法确定黄土地基掏挖扩底基础抗拔承载性能;荷载-位移曲线归一化处理可显著减小实测荷载-位移曲线的离散性,按双曲线拟合参数a、b均值确定的归一化荷载-位移曲线代表了试验平均值,而试验荷载-位移曲线刚度远大于95%保证概率的预测曲线。
隨著西部電網建設的髮展,越來越多的架空輸電線路需經過黃土地區。輸電線路桿塔基礎抗拔能力通常是其設計控製條件。掏挖擴底基礎因具有較好的抗拔承載性能而在黃土地區輸電線路工程中得到廣汎應用。根據甘肅黃土地區2箇試驗場地12箇掏挖擴底基礎實測上拔荷載位-移麯線,分彆採用 Chin 雙麯線模型以及初始直線斜率法、雙直線交點法和 L1-L2方法確定瞭基礎抗拔極限承載力及其對應位移,得到瞭抗拔基礎歸一化荷載-位移麯線,採用歸一化荷載-位移雙麯線模型對試驗結果進行擬閤,給齣瞭不同保證概率下基礎荷載-位移預測麯線。結果錶明:初始直線斜率法得到的承載力最小,雙直線交點法次之,Chin 數學模型法最大,宜採用 L1-L2方法確定黃土地基掏挖擴底基礎抗拔承載性能;荷載-位移麯線歸一化處理可顯著減小實測荷載-位移麯線的離散性,按雙麯線擬閤參數a、b均值確定的歸一化荷載-位移麯線代錶瞭試驗平均值,而試驗荷載-位移麯線剛度遠大于95%保證概率的預測麯線。
수착서부전망건설적발전,월래월다적가공수전선로수경과황토지구。수전선로간탑기출항발능력통상시기설계공제조건。도알확저기출인구유교호적항발승재성능이재황토지구수전선로공정중득도엄범응용。근거감숙황토지구2개시험장지12개도알확저기출실측상발하재위-이곡선,분별채용 Chin 쌍곡선모형이급초시직선사솔법、쌍직선교점법화 L1-L2방법학정료기출항발겁한승재력급기대응위이,득도료항발기출귀일화하재-위이곡선,채용귀일화하재-위이쌍곡선모형대시험결과진행의합,급출료불동보증개솔하기출하재-위이예측곡선。결과표명:초시직선사솔법득도적승재력최소,쌍직선교점법차지,Chin 수학모형법최대,의채용 L1-L2방법학정황토지기도알확저기출항발승재성능;하재-위이곡선귀일화처리가현저감소실측하재-위이곡선적리산성,안쌍곡선의합삼수a、b균치학정적귀일화하재-위이곡선대표료시험평균치,이시험하재-위이곡선강도원대우95%보증개솔적예측곡선。
In recent years, the construction of electricity transmission systems that span from west to east China has been planned. Thus, the construction of foundations for overhead transmission towers is inevitable. Uplift loading often controls the design of transmission tower foundations. Belled piers have been used in loess area to satisfy the requirements for uplift resistance. At two places in Gansu province, twelve full-scale tests were carried out to investigate the uplift behavior of belled piers in loess. Based on the measured load-displacement curves, the ultimate bearing capacities and displacements were interpreted using the Chin hyperbolic model, the slope tangent, double line intersection and L1-L2 methods. A mean normalized load-displacement curve was obtained based on the statistical data of measured results. By fitting measured load-displacement data using a normalized hyperbolic model, normalized hyperbolic load-displacement curves were suggested at different confidence levels. The results show that the slope tangent and Chin methods represent the lower and upper bounds, respectively. The L1-L2 method is appropriate for interpreting the failure bearing capacity. Normalizing the measured load-displacement curves reduces the scatter in the curves. The mean curve more closely represents the actual test data. However, the field tests show a substantially stiffer load-displacement response than the curve at the 95%confidence limit.