农业工程学报
農業工程學報
농업공정학보
2014年
6期
46-53
,共8页
聂卫波%任长江%费良军%马孝义
聶衛波%任長江%費良軍%馬孝義
섭위파%임장강%비량군%마효의
灌溉%入渗%模型%畦灌%灌水质量%量纲分析%零惯量模型
灌溉%入滲%模型%畦灌%灌水質量%量綱分析%零慣量模型
관개%입삼%모형%휴관%관수질량%량강분석%령관량모형
irrigation%infiltration%models%border irrigation%irrigation performance%dimensional analysis%zero-inertia model
灌水质量评价是提高灌溉管理水平、改善畦灌质量的重要依据。针对畦灌灌水质量影响因素较多造成分析和评价困难的问题,该文以畦灌试验资料为基础,采用量纲分析和数值模拟相结合的方法,构建了估算畦尾闭合条件下的畦灌灌水质量指标(灌水效率、灌水均匀度和储水效率)计算模型,其所建模型对各灌水技术要素有效组合下的灌水质量指标进行计算,结果表明估算值与采用零惯量模型的模拟值具有较高一致性,两者相对误差的绝对值均值分别为6.72%、6.57%和4.93%,其相关系数R2分别为0.987、0.969和0.990,并采用SPSS软件对估算值和零惯量模型的模拟值进行显著性检验(显著性水平P<0.05),其灌水效率、灌水均匀度和储水效率估算值和模拟值的显著性指标分别为0.226、0.142和0.271,结果表明两者无显著性差异。结合已有文献资料,对文中所建畦灌灌水质量指标计算模型的可靠性进行了验证,结果表明灌水效率、灌水均匀度和储水效率的估算值与实测值具有较高的一致性,两者相对误差的绝对值均值分别为7.76%、9.15%和7.08%。由此说明,该文所建立的畦灌灌水质量指标计算模型具有高的可靠性,且具有较强的普适性。研究结果可为畦灌灌水质量评价和灌水方案设计提供科学依据和技术支持。
灌水質量評價是提高灌溉管理水平、改善畦灌質量的重要依據。針對畦灌灌水質量影響因素較多造成分析和評價睏難的問題,該文以畦灌試驗資料為基礎,採用量綱分析和數值模擬相結閤的方法,構建瞭估算畦尾閉閤條件下的畦灌灌水質量指標(灌水效率、灌水均勻度和儲水效率)計算模型,其所建模型對各灌水技術要素有效組閤下的灌水質量指標進行計算,結果錶明估算值與採用零慣量模型的模擬值具有較高一緻性,兩者相對誤差的絕對值均值分彆為6.72%、6.57%和4.93%,其相關繫數R2分彆為0.987、0.969和0.990,併採用SPSS軟件對估算值和零慣量模型的模擬值進行顯著性檢驗(顯著性水平P<0.05),其灌水效率、灌水均勻度和儲水效率估算值和模擬值的顯著性指標分彆為0.226、0.142和0.271,結果錶明兩者無顯著性差異。結閤已有文獻資料,對文中所建畦灌灌水質量指標計算模型的可靠性進行瞭驗證,結果錶明灌水效率、灌水均勻度和儲水效率的估算值與實測值具有較高的一緻性,兩者相對誤差的絕對值均值分彆為7.76%、9.15%和7.08%。由此說明,該文所建立的畦灌灌水質量指標計算模型具有高的可靠性,且具有較彊的普適性。研究結果可為畦灌灌水質量評價和灌水方案設計提供科學依據和技術支持。
관수질량평개시제고관개관리수평、개선휴관질량적중요의거。침대휴관관수질량영향인소교다조성분석화평개곤난적문제,해문이휴관시험자료위기출,채용량강분석화수치모의상결합적방법,구건료고산휴미폐합조건하적휴관관수질량지표(관수효솔、관수균균도화저수효솔)계산모형,기소건모형대각관수기술요소유효조합하적관수질량지표진행계산,결과표명고산치여채용령관량모형적모의치구유교고일치성,량자상대오차적절대치균치분별위6.72%、6.57%화4.93%,기상관계수R2분별위0.987、0.969화0.990,병채용SPSS연건대고산치화령관량모형적모의치진행현저성검험(현저성수평P<0.05),기관수효솔、관수균균도화저수효솔고산치화모의치적현저성지표분별위0.226、0.142화0.271,결과표명량자무현저성차이。결합이유문헌자료,대문중소건휴관관수질량지표계산모형적가고성진행료험증,결과표명관수효솔、관수균균도화저수효솔적고산치여실측치구유교고적일치성,량자상대오차적절대치균치분별위7.76%、9.15%화7.08%。유차설명,해문소건립적휴관관수질량지표계산모형구유고적가고성,차구유교강적보괄성。연구결과가위휴관관수질량평개화관수방안설계제공과학의거화기술지지。
Border irrigation, a method of plant irrigation, is widely used in China because of its low cost and energy consumption. Water scarcity and the high consumption of water resources in agriculture can lead to the low irrigation performance which has strengthened the need to manage and optimize irrigation systems. Moreover, border irrigation performance can be affected by factors such as soil infiltration parameter, Manning roughness and micro topography of field. These factors were spatial variable, which causes difficulties in design and management of the border irrigation system. Based on the field experiments, the objectives of this study were to propose three functions for estimation of border irrigation performance indicators (application efficiency, uniformity distribution and storage efficiency) under the closed-end condition of the border, by employing the method of dimensional analysis and numerical simulation with the WinSRFR software. The independent irrigation variables are inflow charge per width q, cut-off time t, Manning roughness n, infiltration parameter k, infiltration index a, border length L, filed slope S0 and the required water depth Zr effective on the indicators of irrigation application efficiency Ea and storage efficiency Es. While for the uniform distribution DU, the independent irrigation variables of function are inflow charge per width q, cut-off time t, Manning roughness n, infiltration parameter k, infiltration index a, border length L and filed slope S0. The proposed functions were used to estimate irrigation performance of the different combinations of border irrigation technique elements, and the results showed that the estimated values of irrigation performance agreed well with the simulated values with the zero inertia. The average absolute errors between the estimated values of irrigation performance and the simulated values were 6.72%, 6.57%, and 4.93%, and the determination coefficient R2 were 0.987, 0.969, and 0.990, respectively. The significance test of difference between the estimated values of irrigation performance and the simulated values had been conducted using SPSS software (P=0.05), the significance indexes of the estimated and simulated values of the irrigation application efficiency Ea, uniform distribution DU and storage efficiency Es were 0.226, 0.142, and 0.271, respectively. The results showed no significant difference between the estimated values and the simulated values of irrigation performance. The reliability of the functions proposed here was verified based on basic parameters of border irrigation. The results showed the estimated values of irrigation application efficiency Ea, uniform distribution DU and storage efficiency Es with the proposed functions of this paper were in excellent agreement with the measured values, and the average absolute errors between the estimated values and the measured values of irrigation performance were 7.76%, 9.15%, and 7.08%, respectively. Therefore, three functions proposed here for estimation of border irrigation performance indicators were highly reliable and universal.