计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2014年
z1期
124-126
,共3页
特征选择%傅立叶描述子%主要系数%分类树
特徵選擇%傅立葉描述子%主要繫數%分類樹
특정선택%부립협묘술자%주요계수%분류수
feature selection%Fourier descriptor%principal coefficient%classification tree
针对物体轮廓分类准确性和实时性的要求,提出了一种新的基于傅立叶描述子主要系数的分类树构造方法。首先构建梯度递增决策树( GBDT)模型对轮廓傅立叶描述子进行特征选择,得到其主要系数;然后利用主要系数构建分类和回归树( CART)模型对轮廓分类。实验表明,在保证较高分类准确率的情况下,此分类方法平均耗时仅为0.03 s。
針對物體輪廓分類準確性和實時性的要求,提齣瞭一種新的基于傅立葉描述子主要繫數的分類樹構造方法。首先構建梯度遞增決策樹( GBDT)模型對輪廓傅立葉描述子進行特徵選擇,得到其主要繫數;然後利用主要繫數構建分類和迴歸樹( CART)模型對輪廓分類。實驗錶明,在保證較高分類準確率的情況下,此分類方法平均耗時僅為0.03 s。
침대물체륜곽분류준학성화실시성적요구,제출료일충신적기우부립협묘술자주요계수적분류수구조방법。수선구건제도체증결책수( GBDT)모형대륜곽부립협묘술자진행특정선택,득도기주요계수;연후이용주요계수구건분류화회귀수( CART)모형대륜곽분류。실험표명,재보증교고분류준학솔적정황하,차분류방법평균모시부위0.03 s。
Aiming at the precision and real-time of classification methods of object contours, a novel classification tree of object contours was presented based on Fourier descriptor's principal coefficients. First a Gradient Boost Decision Tree ( GBDT) model was constructed to select the principal coefficients of Fourier descriptor; then the principle coefficients were used to creat Classification And Regression Tree ( CART) model and classify the contours. Experimental results verify the effectiveness of this method which classification's mean time is only 0. 03 seconds with high accuracy .