上海大学学报(自然科学版)
上海大學學報(自然科學版)
상해대학학보(자연과학판)
JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE EDITION)
2014年
1期
107-113
,共7页
混合偏差商%连分式%有理插值
混閤偏差商%連分式%有理插值
혼합편차상%련분식%유리삽치
blending partial difference%continued fraction%rational interpolation
结合二元Thiele型插值分叉连分式和牛顿插值多项式,通过引入混合偏差商构造三元有理插值,进一步给出其特征定理和误差估计,最后给出数值算例。
結閤二元Thiele型插值分扠連分式和牛頓插值多項式,通過引入混閤偏差商構造三元有理插值,進一步給齣其特徵定理和誤差估計,最後給齣數值算例。
결합이원Thiele형삽치분차련분식화우돈삽치다항식,통과인입혼합편차상구조삼원유리삽치,진일보급출기특정정리화오차고계,최후급출수치산례。
The bivariate Thiele-type interpolating branched continued fractions and New-ton interpolation polynomials are combined. By introducing the so-called blending partial differences, a triple rational interpolation scheme is obtained. The characteristic theorem and error estimation are presented. Finally, an example is given.