电测与仪表
電測與儀錶
전측여의표
ELECTRICAL MEASUREMENT & INSTRUMENTATION
2014年
5期
15-20
,共6页
尚海昆%苑津莎%王瑜%靳松
尚海昆%苑津莎%王瑜%靳鬆
상해곤%원진사%왕유%근송
统计参数%相关向量机%变压器%局部放电%识别
統計參數%相關嚮量機%變壓器%跼部放電%識彆
통계삼수%상관향량궤%변압기%국부방전%식별
statistical parameters%RVM%power transformer%partial discharge%type recognition
针对传统的局部放电模式分类器存在的不足,提出了一种基于统计特征参数与相关向量机( RVM )的变压器局部放电类型识别的新方法。首先针对4种变压器局部放电实验模型的二维图谱提取出表征图谱特征的16个统计参数,然后设计一对一RVM多分类模型,将统计参数作为输入向量送入RVM分类模型,实现放电类型识别。测试结果表明,RVM分类器具有较好的放电识别效果,与支持向量机( SVM)相比具有计算复杂度低、相关向量少、训练及测试时间短等优点,两者识别精度相当,均高于BPNN。
針對傳統的跼部放電模式分類器存在的不足,提齣瞭一種基于統計特徵參數與相關嚮量機( RVM )的變壓器跼部放電類型識彆的新方法。首先針對4種變壓器跼部放電實驗模型的二維圖譜提取齣錶徵圖譜特徵的16箇統計參數,然後設計一對一RVM多分類模型,將統計參數作為輸入嚮量送入RVM分類模型,實現放電類型識彆。測試結果錶明,RVM分類器具有較好的放電識彆效果,與支持嚮量機( SVM)相比具有計算複雜度低、相關嚮量少、訓練及測試時間短等優點,兩者識彆精度相噹,均高于BPNN。
침대전통적국부방전모식분류기존재적불족,제출료일충기우통계특정삼수여상관향량궤( RVM )적변압기국부방전류형식별적신방법。수선침대4충변압기국부방전실험모형적이유도보제취출표정도보특정적16개통계삼수,연후설계일대일RVM다분류모형,장통계삼수작위수입향량송입RVM분류모형,실현방전류형식별。측시결과표명,RVM분류기구유교호적방전식별효과,여지지향량궤( SVM)상비구유계산복잡도저、상관향량소、훈련급측시시간단등우점,량자식별정도상당,균고우BPNN。
To overcome the defect of traditional partial discharge pattern classifier, a novel method is proposed based on statistical parameters and RVM for partial discharge type recognition. 16 statistical parameters are extracted which represent partial discharge 2-dimension diagram. One against one multiple RVM classifier is designed. And then the extracted parameters are sent to RVM model for partial discharge type recognition. Experiment results demonstrate that RVM classifier can get good recognition effect. Compared with SVM, RVM has lower complexity, less relevance vec-tors, shorter training and testing time. The partial discharge type recognition accuracy of RVM and SVM is better than that of BPNN.