河北省科学院学报
河北省科學院學報
하북성과학원학보
JOURNAL OF THE HEBEI ACADEMY OF SCIENCES
2013年
4期
1-9
,共9页
存在性与唯一性%边值问题%广义Lavrent'ev-Bitsadze方程
存在性與唯一性%邊值問題%廣義Lavrent'ev-Bitsadze方程
존재성여유일성%변치문제%엄의Lavrent'ev-Bitsadze방정
在文献[1-5]中,作者提出和讨论了具有抛物退化线段的二阶混合型方程的Tricomi问题,它对于空气动力学有重要应用.本文中,我们先给出广义混合型(Lavrent' ev-Bitsadze)方程边值问题解的表达式,该边值问题包括Tricomi问题作为特殊情况,然后证明上述问题解的唯一性.最后我们证明广义二阶混合型(Lavrent' ev-Bitsadze)方程边值问题的可解性,从而得到上述问题解的先验估计.上述问题是一个类似于由J.M.Rassias在最近提出的一个未解解决的问题.
在文獻[1-5]中,作者提齣和討論瞭具有拋物退化線段的二階混閤型方程的Tricomi問題,它對于空氣動力學有重要應用.本文中,我們先給齣廣義混閤型(Lavrent' ev-Bitsadze)方程邊值問題解的錶達式,該邊值問題包括Tricomi問題作為特殊情況,然後證明上述問題解的唯一性.最後我們證明廣義二階混閤型(Lavrent' ev-Bitsadze)方程邊值問題的可解性,從而得到上述問題解的先驗估計.上述問題是一箇類似于由J.M.Rassias在最近提齣的一箇未解解決的問題.
재문헌[1-5]중,작자제출화토론료구유포물퇴화선단적이계혼합형방정적Tricomi문제,타대우공기동역학유중요응용.본문중,아문선급출엄의혼합형(Lavrent' ev-Bitsadze)방정변치문제해적표체식,해변치문제포괄Tricomi문제작위특수정황,연후증명상술문제해적유일성.최후아문증명엄의이계혼합형(Lavrent' ev-Bitsadze)방정변치문제적가해성,종이득도상술문제해적선험고계.상술문제시일개유사우유J.M.Rassias재최근제출적일개미해해결적문제.