岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2014年
4期
1101-1109
,共9页
深埋隧道%地质构造%围岩压力%围岩变形
深埋隧道%地質構造%圍巖壓力%圍巖變形
심매수도%지질구조%위암압력%위암변형
deep tunnel%geological structure%surrounding rock pressure%surrounding rock deformation
以龙厦铁路象山特长隧道地质构造发育、埋深大于500 m段围岩压力及围岩变形的现场测试资料为依据,对大埋深隧道地质构造发育段围岩压力的特点、变形压力的形成机制等进行了研究。研究表明:大埋深隧道,结构面或褶曲、逆断层发育,但地下水不发育的地段,即使围岩强度较高,隧道开挖后仍可能出现较大的变形;围岩较大变形主要是由于在自重应力和残余构造应力作用下被挤密的结构面在隧道开挖后因侧向限制消除而张开、扩容引起的,受其影响,初期支护将受到较大的围岩变形压力。上述地段围岩压力具有下列特点:(1)地下水不发育区段的围岩压力比地下水发育区段的大;(2)隧道纵向发育向斜的区段,拱顶至拱腰段围岩压力最大,越趋向于向斜核部,拱顶围岩压力越大;(3)发育褶曲的断面,与褶曲轴线垂直方向的围岩压力较大;(4)发育逆断层的断面,与断层倾向相反侧的围岩压力较大,该侧断层面附近的围岩压力最大,对侧断层面附近的围岩压力最小;(5)下台阶的围岩压力比上台阶的小,两者的相对差随上、下台阶施工间隔时间的延长而增大。
以龍廈鐵路象山特長隧道地質構造髮育、埋深大于500 m段圍巖壓力及圍巖變形的現場測試資料為依據,對大埋深隧道地質構造髮育段圍巖壓力的特點、變形壓力的形成機製等進行瞭研究。研究錶明:大埋深隧道,結構麵或褶麯、逆斷層髮育,但地下水不髮育的地段,即使圍巖彊度較高,隧道開挖後仍可能齣現較大的變形;圍巖較大變形主要是由于在自重應力和殘餘構造應力作用下被擠密的結構麵在隧道開挖後因側嚮限製消除而張開、擴容引起的,受其影響,初期支護將受到較大的圍巖變形壓力。上述地段圍巖壓力具有下列特點:(1)地下水不髮育區段的圍巖壓力比地下水髮育區段的大;(2)隧道縱嚮髮育嚮斜的區段,拱頂至拱腰段圍巖壓力最大,越趨嚮于嚮斜覈部,拱頂圍巖壓力越大;(3)髮育褶麯的斷麵,與褶麯軸線垂直方嚮的圍巖壓力較大;(4)髮育逆斷層的斷麵,與斷層傾嚮相反側的圍巖壓力較大,該側斷層麵附近的圍巖壓力最大,對側斷層麵附近的圍巖壓力最小;(5)下檯階的圍巖壓力比上檯階的小,兩者的相對差隨上、下檯階施工間隔時間的延長而增大。
이룡하철로상산특장수도지질구조발육、매심대우500 m단위암압력급위암변형적현장측시자료위의거,대대매심수도지질구조발육단위암압력적특점、변형압력적형성궤제등진행료연구。연구표명:대매심수도,결구면혹습곡、역단층발육,단지하수불발육적지단,즉사위암강도교고,수도개알후잉가능출현교대적변형;위암교대변형주요시유우재자중응력화잔여구조응력작용하피제밀적결구면재수도개알후인측향한제소제이장개、확용인기적,수기영향,초기지호장수도교대적위암변형압력。상술지단위암압력구유하렬특점:(1)지하수불발육구단적위암압력비지하수발육구단적대;(2)수도종향발육향사적구단,공정지공요단위암압력최대,월추향우향사핵부,공정위암압력월대;(3)발육습곡적단면,여습곡축선수직방향적위암압력교대;(4)발육역단층적단면,여단층경향상반측적위암압력교대,해측단층면부근적위암압력최대,대측단층면부근적위암압력최소;(5)하태계적위암압력비상태계적소,량자적상대차수상、하태계시공간격시간적연장이증대。
Based on the measured data of surrounding rock pressure and deformation in the segment of Longxia Railway at Xiangshan extra-long tunnel that is buried deeper than 500 m with high development of geological structure, studied the characteristics of surrounding rock pressure, formation mechanism of the deformation pressure, etc., in the segment of the deep tunnel with high development of geological structure are studied. The research shows that:in the deep segment of tunnel, large deformations happen in the sections with lots of structure planes, folds, reversed faults and little ground water, after the excavation, even though the surrounding rock strength is higher. The larger surrounding rock deformation is contributed by the opening and volumetric dilatancy of the structural planes, which are compacted by the self-weight stress and residual tectonic stress, as the lateral confinement is eliminated after the excavation. For that, great deformational pressure from the surrounding rock may be exerted to the primary support. The surrounding rock pressure in the above segment has the following characteristics:(1) The surrounding rock pressure is greater in the sections with little ground water than the sections with a lot. (2) The surrounding rock pressure largest on the arch crown to the hance in the sections with syncline that developed in the tunnel longitudinal, the nearer to the core of the syncline, the greater the pressure. (3) In the sections developed with folds, the surrounding rock pressure is larger in the direction perpendicular to the fold axis. (4) In the sections developed with reversed fault, the surrounding rock pressure is larger in the side that opposite the fault dip;and the surrounding rock pressure in the position of fault surface is largest in this side, smallest in the other side. (5) The surrounding rock pressure on the lower bench is smaller than that on the upper bench, the longer the time between the excavations, the greater the difference between the pressure.