红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
9期
3030-3035
,共6页
光电经纬仪%动态误差%测角精度%红外相机
光電經緯儀%動態誤差%測角精度%紅外相機
광전경위의%동태오차%측각정도%홍외상궤
optoelectronic theodolite%dynamic error%measure precision%infrared camera
针对光电经纬仪红外相机测量系统动态测量精度低的问题,提出了一种通过修正各分系统之间延时时间从而提高动态测量精度的方法。首先介绍了光电经纬仪红外相机测量系统的组成和测量原理,分析了大地坐标系下物像空间的对应关系,指出了影响光电经纬仪红外相机测量系统的原因是相机内方位元素的准确性和光学畸变校正效果。分析了影响光电经纬仪红外相机测量系统动态测量精度的原因,提出了采用各分系统根据工作参数采用不同延时时间的误差修正方法。实验结果验证了该方法的正确性和准确性,标定结果与精度比对实验结果表明,经过动态测角修正的方位角与高低角测角误差均方根值分别由27.89"与17.67"提高到10.07"与8.56",该方法有效地提高了动态测量精度,并且对其他光电测量设备具有参考价值。
針對光電經緯儀紅外相機測量繫統動態測量精度低的問題,提齣瞭一種通過脩正各分繫統之間延時時間從而提高動態測量精度的方法。首先介紹瞭光電經緯儀紅外相機測量繫統的組成和測量原理,分析瞭大地坐標繫下物像空間的對應關繫,指齣瞭影響光電經緯儀紅外相機測量繫統的原因是相機內方位元素的準確性和光學畸變校正效果。分析瞭影響光電經緯儀紅外相機測量繫統動態測量精度的原因,提齣瞭採用各分繫統根據工作參數採用不同延時時間的誤差脩正方法。實驗結果驗證瞭該方法的正確性和準確性,標定結果與精度比對實驗結果錶明,經過動態測角脩正的方位角與高低角測角誤差均方根值分彆由27.89"與17.67"提高到10.07"與8.56",該方法有效地提高瞭動態測量精度,併且對其他光電測量設備具有參攷價值。
침대광전경위의홍외상궤측량계통동태측량정도저적문제,제출료일충통과수정각분계통지간연시시간종이제고동태측량정도적방법。수선개소료광전경위의홍외상궤측량계통적조성화측량원리,분석료대지좌표계하물상공간적대응관계,지출료영향광전경위의홍외상궤측량계통적원인시상궤내방위원소적준학성화광학기변교정효과。분석료영향광전경위의홍외상궤측량계통동태측량정도적원인,제출료채용각분계통근거공작삼수채용불동연시시간적오차수정방법。실험결과험증료해방법적정학성화준학성,표정결과여정도비대실험결과표명,경과동태측각수정적방위각여고저각측각오차균방근치분별유27.89"여17.67"제고도10.07"여8.56",해방법유효지제고료동태측량정도,병차대기타광전측량설비구유삼고개치。
In order to resolve the lower precision of optoelectronic theodolite dynamic measure precision, a method which is based on the correction of different delay time between the clock base and other sub-systems was proposed. The measurement theory and shipment of optoelectronic theodolite were introduced, the relationship between the object and the image was analysis. The reason which infects the precision were accuracy of camera inside azimuth element and the adjustment of optical distortion was pointed. And the reasons which effect the optoelectronic theodolite dynamic measurement were analysis, and the different delay time between different sub-system parameter were pointed. The correction and accuracy of the method were verified by test data, the average variance of optoelectronic theodolite dynamic error in horizontal and vertical were improved from 27.89"and 17.67"to 10.07"and 8.56". This method improves the dynamic measure precision of optoelectronic theodolite and is suitable for other optical electronic measurement system.