红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2014年
9期
2941-2946
,共6页
刘子寒%季轶群%石荣宝%陈宇恒%沈为民
劉子寒%季軼群%石榮寶%陳宇恆%瀋為民
류자한%계질군%석영보%진우항%침위민
成像光谱仪%同心系统%凹面光栅%光学设计
成像光譜儀%同心繫統%凹麵光柵%光學設計
성상광보의%동심계통%요면광책%광학설계
imaging spectrometer%concentric optical system%concave grating%optical design
红外成像光谱仪适用于火山活动探测、森林火灾监测、城市化影响分析、地球表面研究及军事伪装识别等方面。文中基于Dyson中继系统,设计使用波长范围为7.5~10μm的长波红外成像光谱仪,采用凹面衍射光栅分光,系统F数达到1.2,视场角18°,空间分辨率为1 mrad,光谱分辨率为50 nm,NETD小于0.3 K,调制传递函数接近衍射极限,光学系统体积为72 mm×39 mm×39 mm。该系统具有集光本领强、固有像差小、结构紧凑等优点。对其杂散热辐射分析表明,采用实入瞳作为冷光栏和整体制冷的方法,能有效地抑制光机系统自身的热辐射。
紅外成像光譜儀適用于火山活動探測、森林火災鑑測、城市化影響分析、地毬錶麵研究及軍事偽裝識彆等方麵。文中基于Dyson中繼繫統,設計使用波長範圍為7.5~10μm的長波紅外成像光譜儀,採用凹麵衍射光柵分光,繫統F數達到1.2,視場角18°,空間分辨率為1 mrad,光譜分辨率為50 nm,NETD小于0.3 K,調製傳遞函數接近衍射極限,光學繫統體積為72 mm×39 mm×39 mm。該繫統具有集光本領彊、固有像差小、結構緊湊等優點。對其雜散熱輻射分析錶明,採用實入瞳作為冷光欄和整體製冷的方法,能有效地抑製光機繫統自身的熱輻射。
홍외성상광보의괄용우화산활동탐측、삼림화재감측、성시화영향분석、지구표면연구급군사위장식별등방면。문중기우Dyson중계계통,설계사용파장범위위7.5~10μm적장파홍외성상광보의,채용요면연사광책분광,계통F수체도1.2,시장각18°,공간분변솔위1 mrad,광보분변솔위50 nm,NETD소우0.3 K,조제전체함수접근연사겁한,광학계통체적위72 mm×39 mm×39 mm。해계통구유집광본령강、고유상차소、결구긴주등우점。대기잡산열복사분석표명,채용실입동작위랭광란화정체제랭적방법,능유효지억제광궤계통자신적열복사。
Infrared imaging spectrometers are applied to volcano behavior detection, forest fire survey, urbanization effect analysis, terrestrial composition and change monitoring, and camouflage recognition. In this paper, based on Dyson relay, a long wave infrared imaging spectrometer with wavelength range of 7.5 to 10μm was designed, which used a concave diffraction grating as its dispersive element. Its F number reached 1.2, field angle of view was 18° and spatial pixel resolution was 1 mrad, spectral resolution was 50 nm and noise equivalent temperature difference (NETD) was less than 0.3 K. The size of this designed optical system was about 72 mm ×39 mm ×39 mm, and its modulation transfer function approached to diffraction limitation. It has advantages of high throughput, low inherent aberration, and compactness. Analysis of its stray thermal radiation shows that its own thermal radiation of optical-mechanical system can be effectively suppressed by use of real entrance pupil as cool stop and of cryogenic optics.