化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
10期
3891-3898
,共8页
常丰瑞%黄俭标%马建新%杨代军%李冰%严泽宇%顾荣鑫
常豐瑞%黃儉標%馬建新%楊代軍%李冰%嚴澤宇%顧榮鑫
상봉서%황검표%마건신%양대군%리빙%엄택우%고영흠
燃料电池%碳载铂纳米线%催化剂%电化学
燃料電池%碳載鉑納米線%催化劑%電化學
연료전지%탄재박납미선%최화제%전화학
fuel cells%carbon-supported Pt nanowires%catalyst%electrochemistry
采用无模板法制备了用于质子交换膜燃料电池(PEMFC)的碳载铂纳米线(Pt NWs/C)阴极催化剂,使用透射电镜(TEM)和X射线衍射图谱技术(XRD)对催化剂的微观结构和形貌进行了表征。研究结果表明,制备的铂催化剂具有纳米线的结构,平均截面直径为(4.0±0.2)nm,线长为15~25 nm。利用循环伏安(CV)法和线性伏安扫描法(LSV)表征催化剂的电化学活性和氧还原反应(ORR)特性,结果表明制备的Pt NWs/C催化剂电化学特性良好。利用Pt NWs/C和Pt/C作为阴极催化剂制备膜电极(MEA),并进行测试,最大功率密度分别为705.6 mW·cm-2和674.4 mW·cm-2。然后以Pt NWs/C和Pt/C为阴极催化剂组装了18片和20片的电堆,并进行性能测试,电堆的最大功率密度分别为409.2 mW·cm-2和702.7 mW·cm-2,单电池电压差异系数(Cv)分别为16.1%和4.36%,这表明Pt NWs/C作为阴极催化剂在放大后的膜电极组件(MEA)里表现出较好的催化活性,但与商业催化剂相比其性能与均一性还有待提高。该研究可为Pt NWs/C催化剂放大制备提供依据,同时可为后续的基于Pt NWs/C的电堆的耐久性测试和车载应用奠定基础。
採用無模闆法製備瞭用于質子交換膜燃料電池(PEMFC)的碳載鉑納米線(Pt NWs/C)陰極催化劑,使用透射電鏡(TEM)和X射線衍射圖譜技術(XRD)對催化劑的微觀結構和形貌進行瞭錶徵。研究結果錶明,製備的鉑催化劑具有納米線的結構,平均截麵直徑為(4.0±0.2)nm,線長為15~25 nm。利用循環伏安(CV)法和線性伏安掃描法(LSV)錶徵催化劑的電化學活性和氧還原反應(ORR)特性,結果錶明製備的Pt NWs/C催化劑電化學特性良好。利用Pt NWs/C和Pt/C作為陰極催化劑製備膜電極(MEA),併進行測試,最大功率密度分彆為705.6 mW·cm-2和674.4 mW·cm-2。然後以Pt NWs/C和Pt/C為陰極催化劑組裝瞭18片和20片的電堆,併進行性能測試,電堆的最大功率密度分彆為409.2 mW·cm-2和702.7 mW·cm-2,單電池電壓差異繫數(Cv)分彆為16.1%和4.36%,這錶明Pt NWs/C作為陰極催化劑在放大後的膜電極組件(MEA)裏錶現齣較好的催化活性,但與商業催化劑相比其性能與均一性還有待提高。該研究可為Pt NWs/C催化劑放大製備提供依據,同時可為後續的基于Pt NWs/C的電堆的耐久性測試和車載應用奠定基礎。
채용무모판법제비료용우질자교환막연료전지(PEMFC)적탄재박납미선(Pt NWs/C)음겁최화제,사용투사전경(TEM)화X사선연사도보기술(XRD)대최화제적미관결구화형모진행료표정。연구결과표명,제비적박최화제구유납미선적결구,평균절면직경위(4.0±0.2)nm,선장위15~25 nm。이용순배복안(CV)법화선성복안소묘법(LSV)표정최화제적전화학활성화양환원반응(ORR)특성,결과표명제비적Pt NWs/C최화제전화학특성량호。이용Pt NWs/C화Pt/C작위음겁최화제제비막전겁(MEA),병진행측시,최대공솔밀도분별위705.6 mW·cm-2화674.4 mW·cm-2。연후이Pt NWs/C화Pt/C위음겁최화제조장료18편화20편적전퇴,병진행성능측시,전퇴적최대공솔밀도분별위409.2 mW·cm-2화702.7 mW·cm-2,단전지전압차이계수(Cv)분별위16.1%화4.36%,저표명Pt NWs/C작위음겁최화제재방대후적막전겁조건(MEA)리표현출교호적최화활성,단여상업최화제상비기성능여균일성환유대제고。해연구가위Pt NWs/C최화제방대제비제공의거,동시가위후속적기우Pt NWs/C적전퇴적내구성측시화차재응용전정기출。
Carbon supported platinum nanowires (Pt NWs/C), acting as cathode catalyst for proton exchange membrane fuel cell (PEMFC), were synthesized by reducing H2PtCl6 with HCOOH at room temperature without assistance of template. The catalyst microstructure and morphology were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The Pt NWs/C had an average cross-sectional diameter of (4.0±0.2) nm and a length of 15-25 nm. Good electrocatalytic performance and oxygen reduction reaction (ORR) of the as-prepared catalyst was characterized by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). Two membrane electrode assemblies (MEAs) were fabricated, with Pt NWs/C and Pt/C as cathode catalyst respectively, and tested for comparison. The maximum power densities of Pt NWs/C and Pt/C, respectively were 705.6 mW·cm-2 and 674.4 mW·cm-2. Afterwards, an 18-cell stack with Pt NWs/C as cathode catalyst and a 20-cell stack with Pt/C as cathode catalyst were built for testing. Maximum power densities were 409.2 mW·cm-2 and 702.7 mW·cm-2, and coefficients of variation (Cv) of individual cell were 16.1% and 4.36% at the maximum power density, respectively. Data analysis indicated that Pt NWs/C for the cathode in a MEA exhibited good catalytic activity at a scale-up level, however, as compared with the commercial Pt/C catalyst, CV performance and uniformity should be improved. This work not only sheds light on the scale-up possibility of Pt NWs/C catalyst, but also provides a possibility for further durability test before its application in a fuel cell vehicle.