光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
10期
2758-2763
,共6页
蔡嘉月%梁淼%温亚东%于春霞%王萝萍%王毅%赵龙莲%李军会
蔡嘉月%樑淼%溫亞東%于春霞%王蘿萍%王毅%趙龍蓮%李軍會
채가월%량묘%온아동%우춘하%왕라평%왕의%조룡련%리군회
可见-近红外高光谱%烟叶%颜色特征%部位特征
可見-近紅外高光譜%煙葉%顏色特徵%部位特徵
가견-근홍외고광보%연협%안색특정%부위특정
Visible-near infrared hyperspectral data%Tobacco%Color features%Location features
颜色和部位是烟叶分级的重要组成部分,是影响烟叶质量的关键因素。以红塔集团提供的6类工业分级烟叶标样作为试验样品,其中包括上(B)、中(C)、下(X)三个部位,每个部位包含桔黄(O)、柠檬黄(L)两个色组。采用基于主成分及Fisher准则(PPF)的方法和支持向量机(SVM )方法分析烟叶可见-近红外高光谱的颜色和部位特征,结果表明,采用PPF投影模型法分别对烟叶颜色、部位以及颜色和部位分组进行投影和相似性分析,两种颜色能完全区分,其相似度值为-1.0008;上部烟叶和下部烟叶能完全区分,与中部烟叶有部分交集,其中上部烟叶和下部烟叶的相似性值为-0.4053;6类分组烟叶样品能完全区分,且投影位置关系符合实际的烟叶外观特点。采用SVM方法分别对烟叶颜色、部位以及颜色和部位分组进行判别分析,烟叶颜色的平均识别正确率达到98%,部位的平均识别正确率为96%,颜色和部位分组的平均识别正确率为94%,判别效果良好。因此,应用可见-近红外高光谱分析烟叶的颜色和部位特征具有可行性,为烟叶质量评价、计算机辅助分级以及烟叶智能收购等方面提供参考,同时也为其他农产品外观特性的分析提供了一种新方法。
顏色和部位是煙葉分級的重要組成部分,是影響煙葉質量的關鍵因素。以紅塔集糰提供的6類工業分級煙葉標樣作為試驗樣品,其中包括上(B)、中(C)、下(X)三箇部位,每箇部位包含桔黃(O)、檸檬黃(L)兩箇色組。採用基于主成分及Fisher準則(PPF)的方法和支持嚮量機(SVM )方法分析煙葉可見-近紅外高光譜的顏色和部位特徵,結果錶明,採用PPF投影模型法分彆對煙葉顏色、部位以及顏色和部位分組進行投影和相似性分析,兩種顏色能完全區分,其相似度值為-1.0008;上部煙葉和下部煙葉能完全區分,與中部煙葉有部分交集,其中上部煙葉和下部煙葉的相似性值為-0.4053;6類分組煙葉樣品能完全區分,且投影位置關繫符閤實際的煙葉外觀特點。採用SVM方法分彆對煙葉顏色、部位以及顏色和部位分組進行判彆分析,煙葉顏色的平均識彆正確率達到98%,部位的平均識彆正確率為96%,顏色和部位分組的平均識彆正確率為94%,判彆效果良好。因此,應用可見-近紅外高光譜分析煙葉的顏色和部位特徵具有可行性,為煙葉質量評價、計算機輔助分級以及煙葉智能收購等方麵提供參攷,同時也為其他農產品外觀特性的分析提供瞭一種新方法。
안색화부위시연협분급적중요조성부분,시영향연협질량적관건인소。이홍탑집단제공적6류공업분급연협표양작위시험양품,기중포괄상(B)、중(C)、하(X)삼개부위,매개부위포함길황(O)、저몽황(L)량개색조。채용기우주성분급Fisher준칙(PPF)적방법화지지향량궤(SVM )방법분석연협가견-근홍외고광보적안색화부위특정,결과표명,채용PPF투영모형법분별대연협안색、부위이급안색화부위분조진행투영화상사성분석,량충안색능완전구분,기상사도치위-1.0008;상부연협화하부연협능완전구분,여중부연협유부분교집,기중상부연협화하부연협적상사성치위-0.4053;6류분조연협양품능완전구분,차투영위치관계부합실제적연협외관특점。채용SVM방법분별대연협안색、부위이급안색화부위분조진행판별분석,연협안색적평균식별정학솔체도98%,부위적평균식별정학솔위96%,안색화부위분조적평균식별정학솔위94%,판별효과량호。인차,응용가견-근홍외고광보분석연협적안색화부위특정구유가행성,위연협질량평개、계산궤보조분급이급연협지능수구등방면제공삼고,동시야위기타농산품외관특성적분석제공료일충신방법。
In the present paper ,six categories of standard industrial grading tobacco provided by Hongta Group are taken as experimental samples ,including three different tobacco locations-upper (B) ,middle(C) and lower(X) parts ,with each part containing two kinds of tobacco colors-orange (O) and lemon yellow (L) . Two methods including projection model method based on principal component and Fisher criterion (PPF) and support vector machine (SVM ) method are used to analyze color and location features of tobacco based on visi-ble-near infrared hyperspectral data .The results of projection model method indicate that in the projection and similarity analysis of tobacco color ,location and six tobacco groups classified by color and location ,two kinds of color can be fully differentiated ,of which the similarity value is -1.000 8 .Tobacco from upper and lower parts can also be fully differentiated with similarity value 0.405 3 ,but they both have intersections with tobac-co from middle part .Six tobacco groups classified by color and location can be fully differentiated as well and their projection positions meet the actual external features of tobacco .The results of support vector machine method indicate that in the discriminant analysis of tobacco color ,location and six tobacco groups classified by color and location ,the average recognition rate of tobacco colors reaches 98% .The average recognition rate of tobacco location is 96% .The average recognition rate of six tobacco groups is 94% .Therefore ,it’s feasible to analyze color and location features of tobacco using visible-near infrared hyperspectral data ,which can provide reference for tobacco quality evaluation ,computer-aided grading and tobacco intelligent acquisition ,and also offers a new approach to the analysis of exterior features of other agricultural products .