光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
10期
2737-2742
,共6页
牛晓颖%邵利敏%董芳%赵志磊%祝彦
牛曉穎%邵利敏%董芳%趙誌磊%祝彥
우효영%소리민%동방%조지뢰%축언
驴肉%鉴别%近红外光谱%马氏距离判别分析%簇类独立软模式分类法
驢肉%鑒彆%近紅外光譜%馬氏距離判彆分析%簇類獨立軟模式分類法
려육%감별%근홍외광보%마씨거리판별분석%족류독립연모식분류법
Donkey meat%Discrimination%Near infrared spectroscopy%Mahalanobis distances analysis%Soft independent model-ing of class analogy
驴肉具有极高的食用价值,资源的缺乏使其价格持续走高,由此引发的欺骗和掺假亟待解决。选取了不同部位(脖子、肋板、后墩和腱子)的驴肉样品(n=167)及牛肉(n=47)、猪肉(n=51)和羊肉(n=32)样品在4000~12500cm-1光谱范围上建立了驴肉的近红外光谱鉴别模型。比较了马氏距离判别分析、簇类独立软模式分类法、最小二乘-支持向量机方法分别结合平滑(5点、15点及25点)、一阶和二阶微分、多元散射校正和标准归一化的光谱预处理方法对肉块样品及大中小三个不同粉碎粒径(7,5,3mm)肉糜样品的分类模型结果发现,原始光谱前11个主成分得分作为输入的马氏距离判别及前6个主成分作为输入的最小二乘-支持向量机肉块样品分类模型较优,校正集和预测集正确率分别为100%和98.96%;原始光谱前5个主成分作为输入的LS-SVM大粒径肉糜样品分类模型结果较优,校正集和预测集判别正确率为100%和97.53%;原始光谱前8个主成分得分作为输入的簇类独立软模式分类法中粒径肉糜样品分类模型结果较优,校正集和预测集的判别正确率均为100%;而对于小粒径肉糜样品,原始光谱前7主成分输入的马氏距离判别和前9主成分输入的簇类独立软模式分类法模型均得到了校正集和预测集100%的判别正确率。以上模型中的驴肉样品均得到了100%的判别正确率。研究结果表明,使用近红外光谱分析技术结合化学计量学方法鉴别驴肉是可行的。
驢肉具有極高的食用價值,資源的缺乏使其價格持續走高,由此引髮的欺騙和摻假亟待解決。選取瞭不同部位(脖子、肋闆、後墩和腱子)的驢肉樣品(n=167)及牛肉(n=47)、豬肉(n=51)和羊肉(n=32)樣品在4000~12500cm-1光譜範圍上建立瞭驢肉的近紅外光譜鑒彆模型。比較瞭馬氏距離判彆分析、簇類獨立軟模式分類法、最小二乘-支持嚮量機方法分彆結閤平滑(5點、15點及25點)、一階和二階微分、多元散射校正和標準歸一化的光譜預處理方法對肉塊樣品及大中小三箇不同粉碎粒徑(7,5,3mm)肉糜樣品的分類模型結果髮現,原始光譜前11箇主成分得分作為輸入的馬氏距離判彆及前6箇主成分作為輸入的最小二乘-支持嚮量機肉塊樣品分類模型較優,校正集和預測集正確率分彆為100%和98.96%;原始光譜前5箇主成分作為輸入的LS-SVM大粒徑肉糜樣品分類模型結果較優,校正集和預測集判彆正確率為100%和97.53%;原始光譜前8箇主成分得分作為輸入的簇類獨立軟模式分類法中粒徑肉糜樣品分類模型結果較優,校正集和預測集的判彆正確率均為100%;而對于小粒徑肉糜樣品,原始光譜前7主成分輸入的馬氏距離判彆和前9主成分輸入的簇類獨立軟模式分類法模型均得到瞭校正集和預測集100%的判彆正確率。以上模型中的驢肉樣品均得到瞭100%的判彆正確率。研究結果錶明,使用近紅外光譜分析技術結閤化學計量學方法鑒彆驢肉是可行的。
려육구유겁고적식용개치,자원적결핍사기개격지속주고,유차인발적기편화참가극대해결。선취료불동부위(발자、륵판、후돈화건자)적려육양품(n=167)급우육(n=47)、저육(n=51)화양육(n=32)양품재4000~12500cm-1광보범위상건립료려육적근홍외광보감별모형。비교료마씨거리판별분석、족류독립연모식분류법、최소이승-지지향량궤방법분별결합평활(5점、15점급25점)、일계화이계미분、다원산사교정화표준귀일화적광보예처리방법대육괴양품급대중소삼개불동분쇄립경(7,5,3mm)육미양품적분류모형결과발현,원시광보전11개주성분득분작위수입적마씨거리판별급전6개주성분작위수입적최소이승-지지향량궤육괴양품분류모형교우,교정집화예측집정학솔분별위100%화98.96%;원시광보전5개주성분작위수입적LS-SVM대립경육미양품분류모형결과교우,교정집화예측집판별정학솔위100%화97.53%;원시광보전8개주성분득분작위수입적족류독립연모식분류법중립경육미양품분류모형결과교우,교정집화예측집적판별정학솔균위100%;이대우소립경육미양품,원시광보전7주성분수입적마씨거리판별화전9주성분수입적족류독립연모식분류법모형균득도료교정집화예측집100%적판별정학솔。이상모형중적려육양품균득도료100%적판별정학솔。연구결과표명,사용근홍외광보분석기술결합화학계량학방법감별려육시가행적。
Donkey meat samples (n=167) from different parts of donkey body (neck ,costalia ,rump ,and tendon) ,beef (n=47) ,pork (n=51) and mutton (n=32) samples were used to establish near-infrared reflectance spectroscopy (NIR) classifica-tion models in the spectra range of 4 000~12 500 cm-1 .The accuracies of classification models constructed by Mahalanobis dis-tances analysis ,soft independent modeling of class analogy (SIMCA) and least squares-support vector machine (LS-SVM) ,re-spectively combined with pretreatment of Savitzky-Golay smooth (5 ,15 and 25 points) and derivative (first and second) ,multi-plicative scatter correction and standard normal variate ,were compared .The optimal models for intact samples were obtained by Mahalanobis distances analysis with the first 11 principal components (PCs) from original spectra as inputs and by LS-SVM with the first 6 PCs as inputs ,and correctly classified 100% of calibration set and 98.96% of prediction set .For minced samples of 7 mm diameter the optimal result was attained by LS-SVM with the first 5 PCs from original spectra as inputs ,which gained an ac-curacy of 100% for calibration and 97.53% for prediction .For minced diameter of 5 mm SIMCA model with the first 8 PCs from original spectra as inputs correctly classified 100% of calibration and prediction .And for minced diameter of 3 mm Mahalanobis distances analysis and SIMCA models both achieved 100% accuracy for calibration and prediction respectively with the first 7 and 9 PCs from original spectra as inputs .And in these models ,donkey meat samples were all correctly classified with 100% either in calibration or prediction .The results show that it is feasible that NIR with chemometrics methods is used to discriminate don-key meat from the else meat .