催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2014年
10期
1619-1640
,共22页
氨合成催化剂%发明%发展%挑战%实践%启迪
氨閤成催化劑%髮明%髮展%挑戰%實踐%啟迪
안합성최화제%발명%발전%도전%실천%계적
Ammonia synthesis catalyst%Discovery%Development%Challenge%Practice%Enlightenment
Haber-Bosch发明的氨合成催化剂创立已经100周年。介绍了氨合成催化剂在理论和实践方面的发展、成就及其启迪,展望了氨合成催化剂的未来和面临的新挑战。催化合成氨技术在20世纪化学工业的发展中起着核心的作用。一个世纪以来,氨合成催化剂经历了Fe3O4基熔铁催化剂、Fe1-xO基熔铁催化剂、Ru基催化剂等发展阶段,以及钴钼双金属氮化物催化剂的发现。实践表明,氨合成催化剂是多相催化领域中许多基础研究的起点和试金石,没有别的反应象氨合成反应一样,能够把理论、模型催化剂和实验连接起来。催化合成氨反应仍然是多相催化理论研究的一个理想的模型体系。理解该反应机理并转换成完美技术成为催化研究领域发展的基本标准。这个永不结束的故事仍然没有结束。除了关于反应的基本步骤、真实结构、亚氮化物这些问题之外,催化合成氨在理论上一个新的挑战是关于在室温和常压下氨合成的预测,包括电催化合成氨、光催化合成氨和化学模拟生物固氮以及包括氮分子在内的催化化学研究中几种最稳定的小分子的活化方法等。
Haber-Bosch髮明的氨閤成催化劑創立已經100週年。介紹瞭氨閤成催化劑在理論和實踐方麵的髮展、成就及其啟迪,展望瞭氨閤成催化劑的未來和麵臨的新挑戰。催化閤成氨技術在20世紀化學工業的髮展中起著覈心的作用。一箇世紀以來,氨閤成催化劑經歷瞭Fe3O4基鎔鐵催化劑、Fe1-xO基鎔鐵催化劑、Ru基催化劑等髮展階段,以及鈷鉬雙金屬氮化物催化劑的髮現。實踐錶明,氨閤成催化劑是多相催化領域中許多基礎研究的起點和試金石,沒有彆的反應象氨閤成反應一樣,能夠把理論、模型催化劑和實驗連接起來。催化閤成氨反應仍然是多相催化理論研究的一箇理想的模型體繫。理解該反應機理併轉換成完美技術成為催化研究領域髮展的基本標準。這箇永不結束的故事仍然沒有結束。除瞭關于反應的基本步驟、真實結構、亞氮化物這些問題之外,催化閤成氨在理論上一箇新的挑戰是關于在室溫和常壓下氨閤成的預測,包括電催化閤成氨、光催化閤成氨和化學模擬生物固氮以及包括氮分子在內的催化化學研究中幾種最穩定的小分子的活化方法等。
Haber-Bosch발명적안합성최화제창립이경100주년。개소료안합성최화제재이론화실천방면적발전、성취급기계적,전망료안합성최화제적미래화면림적신도전。최화합성안기술재20세기화학공업적발전중기착핵심적작용。일개세기이래,안합성최화제경력료Fe3O4기용철최화제、Fe1-xO기용철최화제、Ru기최화제등발전계단,이급고목쌍금속담화물최화제적발현。실천표명,안합성최화제시다상최화영역중허다기출연구적기점화시금석,몰유별적반응상안합성반응일양,능구파이론、모형최화제화실험련접기래。최화합성안반응잉연시다상최화이론연구적일개이상적모형체계。리해해반응궤리병전환성완미기술성위최화연구영역발전적기본표준。저개영불결속적고사잉연몰유결속。제료관우반응적기본보취、진실결구、아담화물저사문제지외,최화합성안재이론상일개신적도전시관우재실온화상압하안합성적예측,포괄전최화합성안、광최화합성안화화학모의생물고담이급포괄담분자재내적최화화학연구중궤충최은정적소분자적활화방법등。
Ammonia synthesis catalyst found by Haber-Bosch achieves its history of 100 years. The current understanding and enlightenment from foundation and development of ammonia synthesis catalyst are reviewed, and its future and facing new challenge remained today are expected. Catalytic ammo-nia synthesis technology has played a central role in the development of the chemical industry dur-ing the 20th century. During 100 years, ammonia synthesis catalyst has come through diversified seedtime such as Fe3O4-based iron catalysts, Fe1-xO-based iron catalysts, ruthenium-based catalysts, and discovery of a Co-Mo-N system. Often new techniques, methods, and theories of catalysis have initially been developed and applied in connection with studies of this system. Similarly, new discov-eries in the field of ammonia synthesis have been extended to other fields of catalysis. There is no other practically relevant reaction that leads to such a close interconnection between theory, model catalysis, and experiment as the high-pressure synthesis of ammonia. Catalytic synthesis ammonia reaction is yet a perfect model system for academic research in the field of heterogeneous catalysis. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research. The never-ending story has not ended yet. In addition to questions about the elementary steps of the reaction and the importance of the real structure and subnitrides for the catalyst efficiency, as well as the wide-open question about new catalyst materials, there are also different challenges thrown down by theory for the experimentalist in the prediction of a biomimetic ammonia-synthesis path at room temperature and atmospheric pressure including electrocatalysis, photocatalysis and biomimetic nitrogen fixa-tion.