智能系统学报
智能繫統學報
지능계통학보
CAAI TRANSACTIONS ON INTELLIGENT SYSTEMS
2014年
1期
121-125
,共5页
微博%热点话题%情感分析%语义规则%情感词典
微博%熱點話題%情感分析%語義規則%情感詞典
미박%열점화제%정감분석%어의규칙%정감사전
microblog%hot topics%sentiment analysis%semantic rules%emotional dictionary
近来,针对微博热点话题的情感分析研究得到了广泛关注,而基于监督的学习方法在分析文本时会忽视词语的上下文联系。根据中文微博的特点,提出了一种基于语义规则的方法对微博热点话题进行情感分析。该方法首先需要人工整理出程度副词表、否定词表和微博中默认表情符号的褒贬分类。然后在情感词语计算的基础上,考虑上下文中否定词和程度词对修饰情感词语的情感倾向和情感强度的影响,同时也设定规则计算表情符号对一条微博的情感倾向判断的作用。最后与基于情感词典的方法做实验对比,实验结果表明该方法在文本情感倾向性识别的准确率上有了一定提高。
近來,針對微博熱點話題的情感分析研究得到瞭廣汎關註,而基于鑑督的學習方法在分析文本時會忽視詞語的上下文聯繫。根據中文微博的特點,提齣瞭一種基于語義規則的方法對微博熱點話題進行情感分析。該方法首先需要人工整理齣程度副詞錶、否定詞錶和微博中默認錶情符號的褒貶分類。然後在情感詞語計算的基礎上,攷慮上下文中否定詞和程度詞對脩飾情感詞語的情感傾嚮和情感彊度的影響,同時也設定規則計算錶情符號對一條微博的情感傾嚮判斷的作用。最後與基于情感詞典的方法做實驗對比,實驗結果錶明該方法在文本情感傾嚮性識彆的準確率上有瞭一定提高。
근래,침대미박열점화제적정감분석연구득도료엄범관주,이기우감독적학습방법재분석문본시회홀시사어적상하문련계。근거중문미박적특점,제출료일충기우어의규칙적방법대미박열점화제진행정감분석。해방법수선수요인공정리출정도부사표、부정사표화미박중묵인표정부호적포폄분류。연후재정감사어계산적기출상,고필상하문중부정사화정도사대수식정감사어적정감경향화정감강도적영향,동시야설정규칙계산표정부호대일조미박적정감경향판단적작용。최후여기우정감사전적방법주실험대비,실험결과표명해방법재문본정감경향성식별적준학솔상유료일정제고。
The research on the sentiment analysis for microblog hot topics has attracted much attention recently , while the studying method on the basis of supervision neglects the context of a word in the analysis of text .Accord-ing to the characteristics of Chinese microblogs , a method based on semantic rules is proposed for sentiment analy-sis of microblog hot topics .As for the method , firstly, we need to manually sort out a degree adverb list , a negative word list and the appraisal category of the expression symbols defaulted in a microblog .Secondly , on the basis of the calculation of sentiment words , we consider the impact of negative words and degree words in the context of the emotional tendency and strength decorating sentiment words;in addition, we also set rules for calculating the influ-ence of the expression symbol on the sentiment tendency judgment of a piece of microblog .Finally, our proposed method is compared with the method based on the emotional dictionary .The experimental results show that the pro-posed method improves the identification accuracy of the text sentiment tendency .