西安建筑科技大学学报(自然科学版)
西安建築科技大學學報(自然科學版)
서안건축과기대학학보(자연과학판)
JOURNAL OF XI'AN UNIVERSITY OF ARCHITECTURE & TECHNOLOGY
2014年
1期
84-89
,共6页
RC框架结构%拆除构件法%失效时间%动力放大系数%瞬态时程分析
RC框架結構%拆除構件法%失效時間%動力放大繫數%瞬態時程分析
RC광가결구%탁제구건법%실효시간%동력방대계수%순태시정분석
RC frame structure%alternate load path method%failure time%dynamic amplifying factor%transient time history analysis
为了分析连续倒塌过程中,构件失效时间对动力放大系数的影响,采用拆除构件法,从理论上推导动力放大系数与失效时间的关系,并对一空间RC框架结构进行瞬态时程分析,得出柱子失效过程中失效点处初始位移、最大静位移和最大动位移变化特点,进而得到动力放大系数随失效时间和失效位置的变化规律,对理论结果进行补充说明。结果表明:局部构件失效时间对动力放大系数有显著影响,且二者成反比;随着失效时间增长,动力放大系数分布规律发生变化,失效时间较短时,除顶层外各层动力放大系数均为短边中柱最大,角柱最小;失效时间较长时,分布规律刚好相反。
為瞭分析連續倒塌過程中,構件失效時間對動力放大繫數的影響,採用拆除構件法,從理論上推導動力放大繫數與失效時間的關繫,併對一空間RC框架結構進行瞬態時程分析,得齣柱子失效過程中失效點處初始位移、最大靜位移和最大動位移變化特點,進而得到動力放大繫數隨失效時間和失效位置的變化規律,對理論結果進行補充說明。結果錶明:跼部構件失效時間對動力放大繫數有顯著影響,且二者成反比;隨著失效時間增長,動力放大繫數分佈規律髮生變化,失效時間較短時,除頂層外各層動力放大繫數均為短邊中柱最大,角柱最小;失效時間較長時,分佈規律剛好相反。
위료분석련속도탑과정중,구건실효시간대동력방대계수적영향,채용탁제구건법,종이론상추도동력방대계수여실효시간적관계,병대일공간RC광가결구진행순태시정분석,득출주자실효과정중실효점처초시위이、최대정위이화최대동위이변화특점,진이득도동력방대계수수실효시간화실효위치적변화규률,대이론결과진행보충설명。결과표명:국부구건실효시간대동력방대계수유현저영향,차이자성반비;수착실효시간증장,동력방대계수분포규률발생변화,실효시간교단시,제정층외각층동력방대계수균위단변중주최대,각주최소;실효시간교장시,분포규률강호상반。
Alternate Path Method was used to study the effect of component failure time on the dynamic amplifying factor during progressive collapse. First, the relationship between dynamic amplifying factors and failure times were derived from the theory. Second, the transient time history analysis was carried out on a space RC frame structure to obtain the characteristic of initial displacement, maximum static displacement and maximum dynamic displacement. The general rules of dynamic amplifying factor changing with the failure time and location, were obtained respectively. Theoretical results were complemented by the simulated ones. The results show that the local component failure time has a significant influence on the dynamic amplifying factor and there relationship turns out to be of an inverse type. The distribution of dynamic amplifying factor is found to be different from varies with the increase of failure time. When the failure time is short enough, the maximum dynamic amplifying factor occurs on the short edge middle column and the minimum one occurs on the corner column for a non topmost floor. However, the distribution of dynamic amplifying factor is just the opposite for longer failure time.