计算技术与自动化
計算技術與自動化
계산기술여자동화
COMPUTING TECHNOLOGY AND AUTOMATION
2014年
1期
132-136
,共5页
改进BP算法%神经网络%GDP%时间序列
改進BP算法%神經網絡%GDP%時間序列
개진BP산법%신경망락%GDP%시간서렬
improved BP algorithm%neural network%gross domestic product%time serial
运用不同改进 BP 算法来建立和训练人工神经网络经济预测模型,并对 GDP 进行预测,结果表明:模拟值与实际值吻合较好,基于改进BP神经网络模型预测精度高,模型的通用性和实用性强。
運用不同改進 BP 算法來建立和訓練人工神經網絡經濟預測模型,併對 GDP 進行預測,結果錶明:模擬值與實際值吻閤較好,基于改進BP神經網絡模型預測精度高,模型的通用性和實用性彊。
운용불동개진 BP 산법래건립화훈련인공신경망락경제예측모형,병대 GDP 진행예측,결과표명:모의치여실제치문합교호,기우개진BP신경망락모형예측정도고,모형적통용성화실용성강。
The economic prediction models of neural networks were established and trained by different improved algo-rithms.The research results show:simulated values and real values are in good agreement.The model based on the im-proved BP neural network of GDP has high forecast precision,strong universality and practicality.