西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2014年
2期
191-196
,共6页
张霄宏%雒芬%贾宗璞%沈记全
張霄宏%雒芬%賈宗璞%瀋記全
장소굉%락분%가종박%침기전
MapReduce%分布式计算%预取%调度
MapReduce%分佈式計算%預取%調度
MapReduce%분포식계산%예취%조도
MapReduce%distributed computing%pre-fetching%scheduling
为解决由Reduce任务引起的远程数据访问延时和资源竞争导致的系统性能问题,提出了一种基于预调度的数据预取方法.该方法通过预取数据来隐藏由 Reduce 任务引起的远程数据访问延时,通过控制与Reduce任务相关的资源分配来减少由其引起的资源竞争.此方法已在 Hadoop-0.20.2中实现.实验结果表明,与缺省的 Hadoop MapReduce及 Hadoop Online Prototype相比,该方法可将系统性能提高10%以上.
為解決由Reduce任務引起的遠程數據訪問延時和資源競爭導緻的繫統性能問題,提齣瞭一種基于預調度的數據預取方法.該方法通過預取數據來隱藏由 Reduce 任務引起的遠程數據訪問延時,通過控製與Reduce任務相關的資源分配來減少由其引起的資源競爭.此方法已在 Hadoop-0.20.2中實現.實驗結果錶明,與缺省的 Hadoop MapReduce及 Hadoop Online Prototype相比,該方法可將繫統性能提高10%以上.
위해결유Reduce임무인기적원정수거방문연시화자원경쟁도치적계통성능문제,제출료일충기우예조도적수거예취방법.해방법통과예취수거래은장유 Reduce 임무인기적원정수거방문연시,통과공제여Reduce임무상관적자원분배래감소유기인기적자원경쟁.차방법이재 Hadoop-0.20.2중실현.실험결과표명,여결성적 Hadoop MapReduce급 Hadoop Online Prototype상비,해방법가장계통성능제고10%이상.
Due to the data dependency and the special task execution mode in MapReduce environments, reduce tasks always cause massive remote data access delay and unnecessary resource competition,which degrades the system performance.To solve the performance problem,we propose a pre-fetching method based on pre-scheduling.The method hides the remote data access delay by pre-fetching,and controls the resource competition by adjusting resource allocation of reduce tasks.The method is implemented in Hadoop-0.20.2.The experimental results show that the method improves the system performance by more than 10%,compared with default Hadoop MapReduce and Hadoop Online Prototype.