西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2014年
2期
144-150
,共7页
赵扬扬%周水生%武亚静
趙颺颺%週水生%武亞靜
조양양%주수생%무아정
人脸识别%数据降维%矩阵的广义低秩逼近%二维主成分分析(2DPCA)
人臉識彆%數據降維%矩陣的廣義低秩逼近%二維主成分分析(2DPCA)
인검식별%수거강유%구진적엄의저질핍근%이유주성분분석(2DPCA)
face recognition%data dimension reduction%generalized low rank approximations of matrices (GLRAM)%two-dimensional principal component analysis(2DPCA)
利用二维主成分分析算法通过协方差矩阵获得右投影变换矩阵,进一步对其投影特征矩阵降维获得左投影变换矩阵,提出了一种矩阵广义低秩逼近的新的非迭代算法.ORL和 AR人脸数据库的实验研究表明,新的非迭代算法在图像重建和图像识别方面都取得了和矩阵广义低秩逼近的迭代算法相近的效果,同时节省了大量的训练时间,而较二维主成分分析,新算法以较大的压缩率取得了更好的图像重建效果和识别率.
利用二維主成分分析算法通過協方差矩陣穫得右投影變換矩陣,進一步對其投影特徵矩陣降維穫得左投影變換矩陣,提齣瞭一種矩陣廣義低秩逼近的新的非迭代算法.ORL和 AR人臉數據庫的實驗研究錶明,新的非迭代算法在圖像重建和圖像識彆方麵都取得瞭和矩陣廣義低秩逼近的迭代算法相近的效果,同時節省瞭大量的訓練時間,而較二維主成分分析,新算法以較大的壓縮率取得瞭更好的圖像重建效果和識彆率.
이용이유주성분분석산법통과협방차구진획득우투영변환구진,진일보대기투영특정구진강유획득좌투영변환구진,제출료일충구진엄의저질핍근적신적비질대산법.ORL화 AR인검수거고적실험연구표명,신적비질대산법재도상중건화도상식별방면도취득료화구진엄의저질핍근적질대산법상근적효과,동시절성료대량적훈련시간,이교이유주성분분석,신산법이교대적압축솔취득료경호적도상중건효과화식별솔.
In this paper,we get the right projection transform matrix by the covariance matrix of the 2DPCA algorithm,and gain the left projection transform matrix by dimensional reduction of the feature matrix of the 2DPCA. Then we propose a new non-iterative algorithm for generalized low rank approximation of matrices (NGLRAM).Experiments on ORL and AR face database show that the new NGLRAM saves a lot of training time to get the similar performance with GLRAM in image reconstruction and image recognition.Compared with the 2DPCA,the NGLRAM can lead to better results in image reconstruction and image recognition at a larger compression rate.