物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
2期
232-240
,共9页
TNT%高温热解%ReaxFF/lg%含碳团簇%分子动力学
TNT%高溫熱解%ReaxFF/lg%含碳糰簇%分子動力學
TNT%고온열해%ReaxFF/lg%함탄단족%분자동역학
TNT%Pyrolysis%ReaxFF/lg%Carbon-containing cluster%Molecular dynamics
ReaxFF-MD模拟三硝基甲苯(TNT)高温热解显示增加了伦敦耗散力项(Elg)的ReaxFF/lg势函数在含能材料平衡密度计算方面具有优越性.产物识别分析得出TNT热解的主要产物为NO2、NO、H2O、N2、CO2、CO、OH以及HONO,且最终产物为H2O、N2和CO2.使用ReaxFF势函数模拟同样过程进行比较性分析显示,在主要产物和最终产物方面与ReaxFF/lg作用结果具有一致性,但在化学反应动力学方面表现出一些差异. ortho-NO2键断裂和C-NO2→C-ONO重排布-断裂形成NO2和NO是TNT热解的主要初级反应,且前者产生速率大于后者, NO2和NO形成后很快参与次级反应并最终形成N2.高温热解中形成OH等小分子会促进H2O的形成.环上基团相互反应或直接脱落后,主环间C-C键才发生断裂,但温度升高会加快主环断裂,并进一步分解形成CO2,这也是高温条件下CO2分布产生波动的一个重要原因.并且当晶胞中的TNT分子几乎完全分解时,系统的势能开始明显衰减.与温度相比,密度对热解中最大含碳团簇形成的影响更明显.并且,模拟结果显示,在TNT完全分解前已经出现含碳中间体的聚合现象.此项工作表明使用ReaxFF/lg反应力场研究TNT高温热解可以提供具体的动力学和化学方面的信息,并有助于理解含能材料的爆轰问题并可进行安全评估.
ReaxFF-MD模擬三硝基甲苯(TNT)高溫熱解顯示增加瞭倫敦耗散力項(Elg)的ReaxFF/lg勢函數在含能材料平衡密度計算方麵具有優越性.產物識彆分析得齣TNT熱解的主要產物為NO2、NO、H2O、N2、CO2、CO、OH以及HONO,且最終產物為H2O、N2和CO2.使用ReaxFF勢函數模擬同樣過程進行比較性分析顯示,在主要產物和最終產物方麵與ReaxFF/lg作用結果具有一緻性,但在化學反應動力學方麵錶現齣一些差異. ortho-NO2鍵斷裂和C-NO2→C-ONO重排佈-斷裂形成NO2和NO是TNT熱解的主要初級反應,且前者產生速率大于後者, NO2和NO形成後很快參與次級反應併最終形成N2.高溫熱解中形成OH等小分子會促進H2O的形成.環上基糰相互反應或直接脫落後,主環間C-C鍵纔髮生斷裂,但溫度升高會加快主環斷裂,併進一步分解形成CO2,這也是高溫條件下CO2分佈產生波動的一箇重要原因.併且噹晶胞中的TNT分子幾乎完全分解時,繫統的勢能開始明顯衰減.與溫度相比,密度對熱解中最大含碳糰簇形成的影響更明顯.併且,模擬結果顯示,在TNT完全分解前已經齣現含碳中間體的聚閤現象.此項工作錶明使用ReaxFF/lg反應力場研究TNT高溫熱解可以提供具體的動力學和化學方麵的信息,併有助于理解含能材料的爆轟問題併可進行安全評估.
ReaxFF-MD모의삼초기갑분(TNT)고온열해현시증가료륜돈모산력항(Elg)적ReaxFF/lg세함수재함능재료평형밀도계산방면구유우월성.산물식별분석득출TNT열해적주요산물위NO2、NO、H2O、N2、CO2、CO、OH이급HONO,차최종산물위H2O、N2화CO2.사용ReaxFF세함수모의동양과정진행비교성분석현시,재주요산물화최종산물방면여ReaxFF/lg작용결과구유일치성,단재화학반응동역학방면표현출일사차이. ortho-NO2건단렬화C-NO2→C-ONO중배포-단렬형성NO2화NO시TNT열해적주요초급반응,차전자산생속솔대우후자, NO2화NO형성후흔쾌삼여차급반응병최종형성N2.고온열해중형성OH등소분자회촉진H2O적형성.배상기단상호반응혹직접탈락후,주배간C-C건재발생단렬,단온도승고회가쾌주배단렬,병진일보분해형성CO2,저야시고온조건하CO2분포산생파동적일개중요원인.병차당정포중적TNT분자궤호완전분해시,계통적세능개시명현쇠감.여온도상비,밀도대열해중최대함탄단족형성적영향경명현.병차,모의결과현시,재TNT완전분해전이경출현함탄중간체적취합현상.차항공작표명사용ReaxFF/lg반응력장연구TNT고온열해가이제공구체적동역학화화학방면적신식,병유조우리해함능재료적폭굉문제병가진행안전평고.
ReaxFF molecular dynamics simulations of trinitrotoluene (TNT) pyrolysis show that use of the ReaxFF/lg potential function, which adds the London dispersion term, gives superior results in equilibrium density calculation of energetic materials. According to our calculations using limited time steps, the main products are NO2, NO, H2O, N2, CO2, CO, OH, and HONO, and H2O, N2, and CO2 are the final products. We also used ReaxFF potential functions to simulate the same process to conduct a comparative analysis. The main and final products are consistent with those obtained using ReaxFF/lg, but the kinetics are different. Both ortho-NO2 homolytic cleavage and C-NO2→C-ONO rearrangement homolysis are thermodynamical y favorable pathways in the early thermal decomposition of TNT. However, C-NO2→C-ONO rearrangement homolysis is less favorable kinetical y than C-NO2 homolysis, since C-NO2 is the weakest bond in TNT. Soon after their formation, NO2 and NO participate in secondary reactions and eventual y form N2. Pyrolysis to form OH and other smal molecules promotes the formation of H2O. Aromatic ring fission does not take place until most of the attached groups have interacted or are removed, and increasing the temperature accelerates main-ring fission and further decomposition to form CO2;this is the major reason for CO2 distribution fluctuations under high-temperature conditions. When the TNT molecules in the unit cellare almost completely decomposed, the potential energy of the system is significantly attenuated. The maximum amount of carbon-containing clusters formed in the thermal decomposition is more dependent on density than on temperature. Moreover, the simulation results show that coagulation of carbonaceous intermediates occurs before the TNT decomposes completely. These studies show that the simulation of TNT pyrolysis using the ReaxFF/lg reactive force field can provide detailed kinetic and chemical information, which are helpful in understanding the detonation of energetic materials and assessing their security.