模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
3期
242-247
,共6页
梯度方向直方图%特征描述%特征提取%维数约简
梯度方嚮直方圖%特徵描述%特徵提取%維數約簡
제도방향직방도%특정묘술%특정제취%유수약간
Histogram of Oriented Gradients ( HOT )%Feature Description%Feature Extraction%Dimensionality Reduction
作为衍生于尺度不变特征变换的特征描述,梯度方向直方图( HOG)在人体检测、手势识别、人脸识别、场景分类等方面得到广泛应用.但HOG的特征维数高,导致维数灾难和大计算量.文中发现HOG特征的高维度源自它需在众多重叠块中计算直方图.虽然重叠块机制对特征的鲁棒性有积极作用,但也导致信息冗余.为去除冗余信息并降低特征维数,从直方图归一化入手,提出非重叠式梯度方向直方图.所提方法的维数降低为传统方法的1/3.在人手和人体检测上的实验表明,该方法不仅物体检测速度得到显著提高,检测准确度也得到改善.
作為衍生于呎度不變特徵變換的特徵描述,梯度方嚮直方圖( HOG)在人體檢測、手勢識彆、人臉識彆、場景分類等方麵得到廣汎應用.但HOG的特徵維數高,導緻維數災難和大計算量.文中髮現HOG特徵的高維度源自它需在衆多重疊塊中計算直方圖.雖然重疊塊機製對特徵的魯棒性有積極作用,但也導緻信息冗餘.為去除冗餘信息併降低特徵維數,從直方圖歸一化入手,提齣非重疊式梯度方嚮直方圖.所提方法的維數降低為傳統方法的1/3.在人手和人體檢測上的實驗錶明,該方法不僅物體檢測速度得到顯著提高,檢測準確度也得到改善.
작위연생우척도불변특정변환적특정묘술,제도방향직방도( HOG)재인체검측、수세식별、인검식별、장경분류등방면득도엄범응용.단HOG적특정유수고,도치유수재난화대계산량.문중발현HOG특정적고유도원자타수재음다중첩괴중계산직방도.수연중첩괴궤제대특정적로봉성유적겁작용,단야도치신식용여.위거제용여신식병강저특정유수,종직방도귀일화입수,제출비중첩식제도방향직방도.소제방법적유수강저위전통방법적1/3.재인수화인체검측상적실험표명,해방법불부물체검측속도득도현저제고,검측준학도야득도개선.
As a derivation version of scale-invariant feature transform ( SIFT) , histogram of oriented gradients ( HOG) is widely used in human detection, gesture recognition, face recognition, scene classification, etc. However, the high dimension of the HOG feature vector leads to the curse of the dimensionality and high computation complexity. In this paper, it is found that the high dimension of HOG feature vector results from computing histograms of overlapping blocks. Though overlapping block is useful for enhancing the robustness, it leads to redundant information. To reduce the redundant information and the number of features as well, a non-overlapping version of HOG is proposed. The dimensions of the proposed method are 1/3 of those of traditional ones. The experimental results on palm and human detection demonstrate the efficiency and effectiveness of the proposed method.