高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2014年
4期
755-759
,共5页
杜咏梅%李春迎%张建伟%王伟%亢建平%吕剑
杜詠梅%李春迎%張建偉%王偉%亢建平%呂劍
두영매%리춘영%장건위%왕위%항건평%려검
高密度烃燃料%四氢环戊二烯三聚体%热裂解
高密度烴燃料%四氫環戊二烯三聚體%熱裂解
고밀도경연료%사경배무이희삼취체%열렬해
High density hydrocarbon fuel%Tetrahydrotricyclopentadiene%Thermal decomposition
以双环戊二烯为原料,经D-A反应及催化加氢合成了高密度烃燃料四氢环戊二烯三聚体( THTCPD).该三聚体的密度为1.082 g/cm3,体积热值为47.5 MJ/L,闪点为120℃,凝固点为48~49℃.采用裂解器与色谱-质谱联用技术,对THTCPD的热裂解进行了在线监测,结果表明温度对裂解反应影响较大.对裂解产物的结构进行了分析,产物以甲烷、乙烯、丙烯、环戊烯、环戊二烯、苯和甲苯为主.依据产物结构及单分子自由基反应模型,推测得到了9种路径的裂解机理.采用X3LYP法进行了各自由基的热力学计算,得到各反应路径的相对能量及路径比.通过不同温度下的裂解转化率,计算得到热裂解反应动力学方程,经线性拟合得到活化能Ea=6.67×104 kJ/mol,指前因子A=133.75.
以雙環戊二烯為原料,經D-A反應及催化加氫閤成瞭高密度烴燃料四氫環戊二烯三聚體( THTCPD).該三聚體的密度為1.082 g/cm3,體積熱值為47.5 MJ/L,閃點為120℃,凝固點為48~49℃.採用裂解器與色譜-質譜聯用技術,對THTCPD的熱裂解進行瞭在線鑑測,結果錶明溫度對裂解反應影響較大.對裂解產物的結構進行瞭分析,產物以甲烷、乙烯、丙烯、環戊烯、環戊二烯、苯和甲苯為主.依據產物結構及單分子自由基反應模型,推測得到瞭9種路徑的裂解機理.採用X3LYP法進行瞭各自由基的熱力學計算,得到各反應路徑的相對能量及路徑比.通過不同溫度下的裂解轉化率,計算得到熱裂解反應動力學方程,經線性擬閤得到活化能Ea=6.67×104 kJ/mol,指前因子A=133.75.
이쌍배무이희위원료,경D-A반응급최화가경합성료고밀도경연료사경배무이희삼취체( THTCPD).해삼취체적밀도위1.082 g/cm3,체적열치위47.5 MJ/L,섬점위120℃,응고점위48~49℃.채용렬해기여색보-질보련용기술,대THTCPD적열렬해진행료재선감측,결과표명온도대렬해반응영향교대.대렬해산물적결구진행료분석,산물이갑완、을희、병희、배무희、배무이희、분화갑분위주.의거산물결구급단분자자유기반응모형,추측득도료9충로경적렬해궤리.채용X3LYP법진행료각자유기적열역학계산,득도각반응로경적상대능량급로경비.통과불동온도하적렬해전화솔,계산득도열렬해반응동역학방정,경선성의합득도활화능Ea=6.67×104 kJ/mol,지전인자A=133.75.
As a high density hydrocarbon fuel, tetrahydrotricyclopentadiene( THTCPD) was synthesized from dicyclopentadiene and indene by D-A reaction and hydrogenation. The density of THTCPD is 1.082 g/cm3 , volumetric combustion heat is 47.5 MJ/L, flash point is 120 ℃ and freezing point is 48-49 ℃. Thermal de-composition of THTCPD was studied in a decomposition reactor at atmospheric pressure, in the temperature range of 973-1153 K. Products were detected by gas chromatography-mass spectroscopy. The major products were methane, ethylene, propylene, cyclopentene, cyclopentadiene, benzene and toluene. The conversion of THTCPD at different temperatures and time was investigated. The results indicated that the effect of tempera-ture was superior to other factors in this reaction. A primary mechanism including nine pathways was also pre-sumed according to the main products of the reaction and the monoradical mechanism. Density functional theo-ry calculations ( X3 LYP ) of the potential energy surface was performed to investigate the mechanisms of THTCPD breakdown. Relative energy and ratio of reation routes were computed. The kinetic equation of ther-mal decomposition was obtained by relation of the conversion and temperature. The pre-exponential factor and activation energy overall reaction order for thermal cracking of THTCPD were determined by linear regression analysis to be 133.75 and 6.67í104 kJ/mol, respectively.