信阳师范学院学报(自然科学版)
信暘師範學院學報(自然科學版)
신양사범학원학보(자연과학판)
JOURNAL OF XINYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
2014年
4期
597-600
,共4页
历史轨迹%驾驶偏好挖掘%多因素
歷史軌跡%駕駛偏好挖掘%多因素
역사궤적%가사편호알굴%다인소
historical trajectory%driving preference mining%multiple factor
提出一种新型基于窗口的数据挖掘算法,以用来挖掘所定义的多因素驾驶偏好。具体地,定义了多因素之间的两两权衡来刻画驾驶偏好;提出了一种用于估算偏好分布的挖掘算法,并根据假设引入了椭圆对挖掘算法进行了优化。结果证明,该方法能够发现本文所定义的多因素驾驶偏好,并且算法有效、快速,具有较好的扩展性。
提齣一種新型基于窗口的數據挖掘算法,以用來挖掘所定義的多因素駕駛偏好。具體地,定義瞭多因素之間的兩兩權衡來刻畫駕駛偏好;提齣瞭一種用于估算偏好分佈的挖掘算法,併根據假設引入瞭橢圓對挖掘算法進行瞭優化。結果證明,該方法能夠髮現本文所定義的多因素駕駛偏好,併且算法有效、快速,具有較好的擴展性。
제출일충신형기우창구적수거알굴산법,이용래알굴소정의적다인소가사편호。구체지,정의료다인소지간적량량권형래각화가사편호;제출료일충용우고산편호분포적알굴산법,병근거가설인입료타원대알굴산법진행료우화。결과증명,해방법능구발현본문소정의적다인소가사편호,병차산법유효、쾌속,구유교호적확전성。
A novel window based data mining algorithm was proposed and used to mine the defined multivariate driving preference. Specifically, a model describing paired cost aspects to reflect driving preference was defined, a da-ta mining algorithm to estimate the multivariate driving preference distribution was proposed, and ellipse to optimize the data mining algorithm was introduced. The results showed that the method in this paper could discover the defined mul-tivariate driving preference and the proposed algorithm was effective, fast and had good scalability.