西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2014年
2期
181-187
,共7页
动力配平%飞翼布局%电动无人机%总体参数设计%遗传算法
動力配平%飛翼佈跼%電動無人機%總體參數設計%遺傳算法
동력배평%비익포국%전동무인궤%총체삼수설계%유전산법
静稳定的固定翼飞机纵向稳定性与飞行性能对飞机布局的要求往往相矛盾,这个矛盾对飞翼布局飞机的影响尤其显著,这导致飞翼布局的飞行性能一定程度上被降低。针对这个问题,提出了采用螺旋桨动力参与纵向配平的飞翼布局无人机。提出的飞翼布局无人机使用正弯度翼型改善升阻特性,利用外洗和螺旋桨动力实现无人机纵向配平。利用CMARC面元法和粘性阻力修正进行气动力计算和稳定性分析,在失速范围内,其计算结果与风洞实验结果吻合较好。研究了动力系统螺旋桨和电机的匹配,同时考虑到不同任务段功率需求不同,建立了动力系统效率计算模型并融入到总体设计中。基于遗传算法对有无动力配平的飞翼布局无人机总体参数进行了优化,优化结果表明:采用螺旋桨动力配平可以部分地替代升降副翼进行纵向配平,一方面提升了无人机最大可用升力系数,增大了无人机翼载荷,在保持翼展固定的条件下增大了无人机展弦比,另一方面减小采用正弯度翼型飞翼布局无人机的后掠角和外洗,改善无人机展向升力分布,二者共同作用下提高无人机升阻比,提升了无人机的航时。最后探讨了总体参数对螺旋桨动力配平布局无人机性能的影响,为此类无人机设计提供了一定的指导意义。
靜穩定的固定翼飛機縱嚮穩定性與飛行性能對飛機佈跼的要求往往相矛盾,這箇矛盾對飛翼佈跼飛機的影響尤其顯著,這導緻飛翼佈跼的飛行性能一定程度上被降低。針對這箇問題,提齣瞭採用螺鏇槳動力參與縱嚮配平的飛翼佈跼無人機。提齣的飛翼佈跼無人機使用正彎度翼型改善升阻特性,利用外洗和螺鏇槳動力實現無人機縱嚮配平。利用CMARC麵元法和粘性阻力脩正進行氣動力計算和穩定性分析,在失速範圍內,其計算結果與風洞實驗結果吻閤較好。研究瞭動力繫統螺鏇槳和電機的匹配,同時攷慮到不同任務段功率需求不同,建立瞭動力繫統效率計算模型併融入到總體設計中。基于遺傳算法對有無動力配平的飛翼佈跼無人機總體參數進行瞭優化,優化結果錶明:採用螺鏇槳動力配平可以部分地替代升降副翼進行縱嚮配平,一方麵提升瞭無人機最大可用升力繫數,增大瞭無人機翼載荷,在保持翼展固定的條件下增大瞭無人機展絃比,另一方麵減小採用正彎度翼型飛翼佈跼無人機的後掠角和外洗,改善無人機展嚮升力分佈,二者共同作用下提高無人機升阻比,提升瞭無人機的航時。最後探討瞭總體參數對螺鏇槳動力配平佈跼無人機性能的影響,為此類無人機設計提供瞭一定的指導意義。
정은정적고정익비궤종향은정성여비행성능대비궤포국적요구왕왕상모순,저개모순대비익포국비궤적영향우기현저,저도치비익포국적비행성능일정정도상피강저。침대저개문제,제출료채용라선장동력삼여종향배평적비익포국무인궤。제출적비익포국무인궤사용정만도익형개선승조특성,이용외세화라선장동력실현무인궤종향배평。이용CMARC면원법화점성조력수정진행기동력계산화은정성분석,재실속범위내,기계산결과여풍동실험결과문합교호。연구료동력계통라선장화전궤적필배,동시고필도불동임무단공솔수구불동,건립료동력계통효솔계산모형병융입도총체설계중。기우유전산법대유무동력배평적비익포국무인궤총체삼수진행료우화,우화결과표명:채용라선장동력배평가이부분지체대승강부익진행종향배평,일방면제승료무인궤최대가용승력계수,증대료무인궤익재하,재보지익전고정적조건하증대료무인궤전현비,령일방면감소채용정만도익형비익포국무인궤적후략각화외세,개선무인궤전향승력분포,이자공동작용하제고무인궤승조비,제승료무인궤적항시。최후탐토료총체삼수대라선장동력배평포국무인궤성능적영향,위차류무인궤설계제공료일정적지도의의。
The existing aircraft configuration cannot satisfy the requirements for the longitudinal stability and flight performance of a static and stable fixed-wing aircraft. This is especially true for a flying wing aircraft, whose flight performance deteriorates in maintaining its static stability. Hence, we propose a new aerodynamic configuration that uses the propeller thrust to trim longitudinally the flying wing of an unmanned aerial vehicle ( UAV) . In the config-uration, the positive cambered airfoil is used to replace the conventional reflex cambered airfoil so as to raise the lift to drag ratio and lift of the UAV, which is longitudinally trimmed by wash-out and propeller thrust. We use the commercial software CMARC and empirical formulate to calculate the aerodynamic force of the UAV and analyse its stability. During its stall, the calculation results are in good agreement with the wind tunnel experimental results. We also study the matching between the propeller of the UAV and its motor and establish the mathematical model to calculate the efficiency of its power system and merge it into the overall design by taking into account the difference in power at different mission stages. We use the genetic algorithm to optimize the overall parameters of the flying wing UAV trimmed and not trimmed with propeller thrust. The optimization results, given in Table 1 and Fig. 9, show preliminarily that:(1) the amounts of wash-out and sweepback of the UAV longitudinally trimmed with pro-peller thrust are reduced and its coefficient of maximum lift available and wing loading increase, thereby reducing the wing area;this leads to a larger aspect ratio when the wingspan is kept constant;(2) because of few elevon de-flections and reduced wash-out, the lift to drag ratio increases during cruise and loitering. Finally, we study the effects of overall parameters on the performance of the UAV trimmed with propeller thrust.