中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
4期
1063-1069
,共7页
李秋龙%李茂%雷波%周天%周孑民
李鞦龍%李茂%雷波%週天%週孑民
리추룡%리무%뢰파%주천%주혈민
沉降槽%中心桶%正交试验%赤泥%絮凝%数值模拟
沉降槽%中心桶%正交試驗%赤泥%絮凝%數值模擬
침강조%중심통%정교시험%적니%서응%수치모의
thickener%feedwell%orthogonal test%red mud%flocculation%numerical simulation
为提高中心桶内固含浓度在60~70 g/L范围内料浆的体积分数,以正交试验和数值模拟的方法对沉降槽中心桶的5个结构参数进行数值仿真试验。设计一个5因素5水平的L 25(55)正交试验方案,采用仿真软件FLUENT对不同结构参数组合的沉降槽进行数值模拟计算,分析沉降槽中心桶的结构参数对中心桶内固含分布的影响规律,用极差分析和方差分析法对计算结果进行数理统计分析,得出5个因素对试验指标影响的主次顺序和显著性,从而得到中心桶结构参数的优化组合。结果表明:中心桶内固含分布的主要影响因素是进料射流管的直径,沉降槽中心桶的最佳组合结构参数为中心桶直径为3 m,中心桶深度为5 m、射流管直径d1、d2和d3分别为0.8、0.48和0.36 m,环形挡流板离进料管下沿高度为0.22 m,喉嘴距为0.18 m;优化工况下,中心桶内处于最佳絮凝固含浓度范围内的料浆体积所占中心桶体积的体积分数变为基础工况的4.8倍,显著地提高沉降槽的絮凝沉降效率。
為提高中心桶內固含濃度在60~70 g/L範圍內料漿的體積分數,以正交試驗和數值模擬的方法對沉降槽中心桶的5箇結構參數進行數值倣真試驗。設計一箇5因素5水平的L 25(55)正交試驗方案,採用倣真軟件FLUENT對不同結構參數組閤的沉降槽進行數值模擬計算,分析沉降槽中心桶的結構參數對中心桶內固含分佈的影響規律,用極差分析和方差分析法對計算結果進行數理統計分析,得齣5箇因素對試驗指標影響的主次順序和顯著性,從而得到中心桶結構參數的優化組閤。結果錶明:中心桶內固含分佈的主要影響因素是進料射流管的直徑,沉降槽中心桶的最佳組閤結構參數為中心桶直徑為3 m,中心桶深度為5 m、射流管直徑d1、d2和d3分彆為0.8、0.48和0.36 m,環形擋流闆離進料管下沿高度為0.22 m,喉嘴距為0.18 m;優化工況下,中心桶內處于最佳絮凝固含濃度範圍內的料漿體積所佔中心桶體積的體積分數變為基礎工況的4.8倍,顯著地提高沉降槽的絮凝沉降效率。
위제고중심통내고함농도재60~70 g/L범위내료장적체적분수,이정교시험화수치모의적방법대침강조중심통적5개결구삼수진행수치방진시험。설계일개5인소5수평적L 25(55)정교시험방안,채용방진연건FLUENT대불동결구삼수조합적침강조진행수치모의계산,분석침강조중심통적결구삼수대중심통내고함분포적영향규률,용겁차분석화방차분석법대계산결과진행수리통계분석,득출5개인소대시험지표영향적주차순서화현저성,종이득도중심통결구삼수적우화조합。결과표명:중심통내고함분포적주요영향인소시진료사류관적직경,침강조중심통적최가조합결구삼수위중심통직경위3 m,중심통심도위5 m、사류관직경d1、d2화d3분별위0.8、0.48화0.36 m,배형당류판리진료관하연고도위0.22 m,후취거위0.18 m;우화공황하,중심통내처우최가서응고함농도범위내적료장체적소점중심통체적적체적분수변위기출공황적4.8배,현저지제고침강조적서응침강효솔。
In order to improve the volume fraction of liquid with solid concentration of 60-70 g/L in the feedwell, a orthogonal experiment was proposed through a L25(55)orthogonal program to investigate the feedwell’s performance under five different structural factors. Numerical simulation as well as customed criteria was used to conduct the experiment and evaluate the results. The effects of structure parameters on solid concentration distribution in the feedwell were analyzed, further more, the range analysis and variance analysis were also used to analyze the experiment results. The primary and secondary order sequence of the five factors and their significant effects on design index are obtained, and then, the optimal combination of the feedwell structural parameter was received. The type of the jet pipe is the primary factor, and the optimal combination of the feedwell structural parameters is diameter of 3 m, depth of 5 m, the jet pipe diameterd1,d2 andd3, respectively, of 0.8, 0.48 and 0 .36 m, the annular baffle 0.22 m below the feed pipe, throat nozzle distance of 0.18 m. Under the optimal condition, the volume fraction of the best solid concentration can be increased by 4.8 times compared with that of the base case, which significantly improves the efficiency and process of the thickener.