中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
4期
944-949
,共6页
孙健%刘平%刘新宽%陈小红%何代华%马凤仓%李伟
孫健%劉平%劉新寬%陳小紅%何代華%馬鳳倉%李偉
손건%류평%류신관%진소홍%하대화%마봉창%리위
Cu-Ni-Si合金%连续挤压%组织演变%性能
Cu-Ni-Si閤金%連續擠壓%組織縯變%性能
Cu-Ni-Si합금%련속제압%조직연변%성능
Cu-Ni-Si alloy%continuous extrusion%microstructure transformation%property
利用光学显微镜、透射电子显微镜(TEM)、维氏硬度仪和万能材料试验机对Cu-Ni-Si合金连续挤压过程中的组织演变和性能特征进行研究。结果表明:Cu-Ni-Si 合金在连续挤压过程中发生了第二相颗粒的析出,颗粒大小约为10 nm;与纯铜的连续挤压相比,Cu-Ni-Si合金在连续挤压过程中没有发生明显的动态再结晶,因此,直角弯曲变形区可进一步划分为呈典型织构组织分布的直角弯曲前变形区和直角弯曲后变形区;各变形区的硬度值随着变形量的增加逐渐由95HV上升至194HV,并在粘着区和直角弯曲区出现明显升幅。拉伸实验结果表明:挤压前后,材料的抗拉强度由276 MPa上升至505 MPa,而塑性由22.3%下降至13.4%。
利用光學顯微鏡、透射電子顯微鏡(TEM)、維氏硬度儀和萬能材料試驗機對Cu-Ni-Si閤金連續擠壓過程中的組織縯變和性能特徵進行研究。結果錶明:Cu-Ni-Si 閤金在連續擠壓過程中髮生瞭第二相顆粒的析齣,顆粒大小約為10 nm;與純銅的連續擠壓相比,Cu-Ni-Si閤金在連續擠壓過程中沒有髮生明顯的動態再結晶,因此,直角彎麯變形區可進一步劃分為呈典型織構組織分佈的直角彎麯前變形區和直角彎麯後變形區;各變形區的硬度值隨著變形量的增加逐漸由95HV上升至194HV,併在粘著區和直角彎麯區齣現明顯升幅。拉伸實驗結果錶明:擠壓前後,材料的抗拉彊度由276 MPa上升至505 MPa,而塑性由22.3%下降至13.4%。
이용광학현미경、투사전자현미경(TEM)、유씨경도의화만능재료시험궤대Cu-Ni-Si합금련속제압과정중적조직연변화성능특정진행연구。결과표명:Cu-Ni-Si 합금재련속제압과정중발생료제이상과립적석출,과립대소약위10 nm;여순동적련속제압상비,Cu-Ni-Si합금재련속제압과정중몰유발생명현적동태재결정,인차,직각만곡변형구가진일보화분위정전형직구조직분포적직각만곡전변형구화직각만곡후변형구;각변형구적경도치수착변형량적증가축점유95HV상승지194HV,병재점착구화직각만곡구출현명현승폭。랍신실험결과표명:제압전후,재료적항랍강도유276 MPa상승지505 MPa,이소성유22.3%하강지13.4%。
The microstructure evolution and properties of Cu-Ni-Si alloy during continuous extrusion were investigated by using optical microscopy, transmission electron microscopy, micro-Vickers hardness measurement and universal- testing machine. The results indicate that the precipitation forms during continuous extrusion, the particle size is about 10 nm. Since the completed dynamic recrystallization does not occur, the right-angle bending region can further divide into before-right-angle bending region and after-right-angle bending region. With the increase of deformation, the Vickers hardness rises from 95HV to 194HV during the extrusion, and ascends significantly in adhesion region and after-right-angle bending region, respectively. The tensile test indicates that the continuous extrusion can obviously enhance the tensile strength from 276 MPa to 505 MPa, but slightly decrease the ductility from 22.3% to 13.4%.