中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
4期
919-925
,共7页
随焊超声波激振%数值模拟%焊接残余应力%挠曲变形
隨銲超聲波激振%數值模擬%銲接殘餘應力%撓麯變形
수한초성파격진%수치모의%한접잔여응력%뇨곡변형
welding with trailing ultrasonic vibration%numerical simulation%welding residual stress%deflection distortion
从力学角度出发提出随焊超声波激振控制高强硬铝合金薄板焊接变形的新方法,阐明其控制焊接应力及变形的机理。基于数值模拟分析,利用 Marc 建立铝合金薄板的随焊超声波激振热力耦合模型,找出最优焊接参数以及加载冲击与热源的最佳距离。利用自行研制的随焊超声波激振装置进行焊接试验。结果表明:激振距离为22 mm时,板长方向中截面残余拉应力峰值由常规焊的248 MPa下降到63 MPa,压应力峰值从-77 MPa降低到-27 MPa,低于薄板的临界失稳应力,薄板挠曲变形完全消失,且板边最大挠度由8.66 mm下降到0.9 mm。试验结果与模拟结果吻合较好。
從力學角度齣髮提齣隨銲超聲波激振控製高彊硬鋁閤金薄闆銲接變形的新方法,闡明其控製銲接應力及變形的機理。基于數值模擬分析,利用 Marc 建立鋁閤金薄闆的隨銲超聲波激振熱力耦閤模型,找齣最優銲接參數以及加載遲擊與熱源的最佳距離。利用自行研製的隨銲超聲波激振裝置進行銲接試驗。結果錶明:激振距離為22 mm時,闆長方嚮中截麵殘餘拉應力峰值由常規銲的248 MPa下降到63 MPa,壓應力峰值從-77 MPa降低到-27 MPa,低于薄闆的臨界失穩應力,薄闆撓麯變形完全消失,且闆邊最大撓度由8.66 mm下降到0.9 mm。試驗結果與模擬結果吻閤較好。
종역학각도출발제출수한초성파격진공제고강경려합금박판한접변형적신방법,천명기공제한접응력급변형적궤리。기우수치모의분석,이용 Marc 건립려합금박판적수한초성파격진열력우합모형,조출최우한접삼수이급가재충격여열원적최가거리。이용자행연제적수한초성파격진장치진행한접시험。결과표명:격진거리위22 mm시,판장방향중절면잔여랍응력봉치유상규한적248 MPa하강도63 MPa,압응력봉치종-77 MPa강저도-27 MPa,저우박판적림계실은응력,박판뇨곡변형완전소실,차판변최대뇨도유8.66 mm하강도0.9 mm。시험결과여모의결과문합교호。
A new method of welding with trailing ultrasonic vibration (WTUV) to control the welding distortion of high strength aluminum alloy sheet was put forward, and the mechanism was illustrated. Based on numerical simulation analysis, the model of thermo-mechanical coupled welding with ultrasonic vibration was established using Marc software. The optimal welding parameters and the best distance between the vibrating position and heat source are obtained. The welding experiments were conducted on the self-developed device. The results show that when the distance between vibrating point and heat source is 22 mm, the residual tensile stress in the middle cross-section in longitudinal direction reduces from 248 MPa of conventional welding to 63 MPa. The maximum compressive residual stress reduces from-77 MPa to-27 MPa, which is below the critical buckling stress of the sheet, the deflection distortion disappears entirely, and the maximum deflection of plate edges drops from 8.66 mm to 0.9 mm. There are better agreements between the test results and simulation results.