中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
19期
3170-3177
,共8页
马平川%沈沉%陈颖%黄少伟
馬平川%瀋沉%陳穎%黃少偉
마평천%침침%진영%황소위
状态估计%Newton-GMRES算法%分布式计算
狀態估計%Newton-GMRES算法%分佈式計算
상태고계%Newton-GMRES산법%분포식계산
state estimation%Newton-GMRES algorithm%distributed computing
电力系统状态估计在实际工程中通常由各控制中心采用区域状态估计模式独立完成。考虑到在电网分层分区的控制管理模式下,多样化的电网信息本身就是按照分层分区的分布式模式采集的,分布式状态估计无疑是更加适应该体系的状态估计运行模式。利用集中式优化问题的一阶KKT条件分解技术,实现状态估计任务的分解。为保证在边界上相邻分区状态估计结果的一致性,引入描述边界协调项的等式约束。另外,将上述边界等式约束处理成零功率注入伪量测,以简化分区之间的数据交换,便于重用已有状态估计器。为了尽最大可能维持各个分区计算的独立性,该文给出了协调侧 Lagrangian 函数梯度的两步式计算方法,并结合Newton-GMRES算法完成求解。最后,通过IEEE标准系统的测试,验证了所提方法的有效性。
電力繫統狀態估計在實際工程中通常由各控製中心採用區域狀態估計模式獨立完成。攷慮到在電網分層分區的控製管理模式下,多樣化的電網信息本身就是按照分層分區的分佈式模式採集的,分佈式狀態估計無疑是更加適應該體繫的狀態估計運行模式。利用集中式優化問題的一階KKT條件分解技術,實現狀態估計任務的分解。為保證在邊界上相鄰分區狀態估計結果的一緻性,引入描述邊界協調項的等式約束。另外,將上述邊界等式約束處理成零功率註入偽量測,以簡化分區之間的數據交換,便于重用已有狀態估計器。為瞭儘最大可能維持各箇分區計算的獨立性,該文給齣瞭協調側 Lagrangian 函數梯度的兩步式計算方法,併結閤Newton-GMRES算法完成求解。最後,通過IEEE標準繫統的測試,驗證瞭所提方法的有效性。
전력계통상태고계재실제공정중통상유각공제중심채용구역상태고계모식독립완성。고필도재전망분층분구적공제관리모식하,다양화적전망신식본신취시안조분층분구적분포식모식채집적,분포식상태고계무의시경가괄응해체계적상태고계운행모식。이용집중식우화문제적일계KKT조건분해기술,실현상태고계임무적분해。위보증재변계상상린분구상태고계결과적일치성,인입묘술변계협조항적등식약속。령외,장상술변계등식약속처리성령공솔주입위량측,이간화분구지간적수거교환,편우중용이유상태고계기。위료진최대가능유지각개분구계산적독립성,해문급출료협조측 Lagrangian 함수제도적량보식계산방법,병결합Newton-GMRES산법완성구해。최후,통과IEEE표준계통적측시,험증료소제방법적유효성。
Completely independent area state estimation (ASE) mode was adopted by each control center to implement the whole system calculation in practice. However, taking into account the grid under the hierarchical multi-area control and management structure, a variety of grid information itself was collected in accordance with the hierarchical multi-area distributed mode. Distributed state estimation (DSE) was undoubtedly more suitable to the current architecture. The decomposition of state estimation was implemented by the first-order KKT conditions decomposition technique with integrated optimization problem. In order to guarantee the consistency of SE results on the boundaries of adjacent partitions, the equality constraints to describe the boundary coordination entries were introduced. Moreover, in order to simplify the data exchange between the partitions and to facilitate the reuse of the existing state estimator, the boundary equality constraints above were treated as zero-injection pseudo-measurements. In addition, for the purpose of maintaining the calculation independence of each partition as possible as it could, a two-step method was proposed to calculate the gradient of the Lagrangian for the coordination side and to complete the solving with Newton-GMRES algorithm. At last, the effectiveness of the proposed method was verified through the IEEE standard test suites.