宁夏大学学报(自然科学版)
寧夏大學學報(自然科學版)
저하대학학보(자연과학판)
2014年
2期
113-116
,共4页
分数阶微分方程%边值问题%锥拉伸与锥压缩不动点定理
分數階微分方程%邊值問題%錐拉伸與錐壓縮不動點定理
분수계미분방정%변치문제%추랍신여추압축불동점정리
fraction differential equation%boundary value problems%cone expansion and compression fixed point theorem
研究了一类分数阶微分方程的边值问题:{Dα0+u(t)+ f(u(t))=0, u(0)=0,u(1)=0,其中α(1<α<2)是实数,Dα0+是标准的 Riemann-Liouville 微分,f :[0,+¥)→[0,+¥)连续,t ∈[0,1]。利用范数形式的锥拉伸与锥压缩不动点定理,在满足适当的条件下,证明了该边值问题正解的存在性。
研究瞭一類分數階微分方程的邊值問題:{Dα0+u(t)+ f(u(t))=0, u(0)=0,u(1)=0,其中α(1<α<2)是實數,Dα0+是標準的 Riemann-Liouville 微分,f :[0,+¥)→[0,+¥)連續,t ∈[0,1]。利用範數形式的錐拉伸與錐壓縮不動點定理,在滿足適噹的條件下,證明瞭該邊值問題正解的存在性。
연구료일류분수계미분방정적변치문제:{Dα0+u(t)+ f(u(t))=0, u(0)=0,u(1)=0,기중α(1<α<2)시실수,Dα0+시표준적 Riemann-Liouville 미분,f :[0,+¥)→[0,+¥)련속,t ∈[0,1]。이용범수형식적추랍신여추압축불동점정리,재만족괄당적조건하,증명료해변치문제정해적존재성。
A class of fractional differential equation boundary value problem is studied:{Dα0+u(t)+ f (u(t))= 0, u(0)= 0,u(1)= 0 , where α(1 < α < 2 )is a real number,and Dα0+ is the standard Riemann-Liouville differentiation, t ∈ [0,1],and f :[0,+ ¥)→ [0,+ ¥)is continuous.By using fixed-point theorem of cone expansion and compression of norm type,the existence of positive solutions for fraction differential equation boundary value problems is proved.