噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2014年
3期
73-77,114
,共6页
振动与波%易损件%斜支承系统%矩形脉冲%破损边界
振動與波%易損件%斜支承繫統%矩形脈遲%破損邊界
진동여파%역손건%사지승계통%구형맥충%파손변계
vibration and wave%critical components%tilted support spring system%rectangular pulse%damage boundary
以考虑易损件的斜支承系统为研究对象,建立矩形脉冲激励下系统无量纲非线性冲击动力学方程。以脉冲激励幅值与易损件加速度响应峰值之比作为系统无量纲临界加速度,临界加速度与无量纲脉冲时间乘积为系统无量纲临界速度,引入系统支承角或频率比或质量比,构建斜支承系统易损件破损边界曲面。利用龙格-库塔数值分析方法求解方程,分析讨论频率比、质量比、支承角等因素对易损件破损边界的影响。研究表明,增大频率比、减小系统支承角、增大质量比等可增加易损件安全区域;随无量纲脉冲激励幅值增加,易损件破损区域减小。研究结论为斜支承系统的设计提供理论依据。
以攷慮易損件的斜支承繫統為研究對象,建立矩形脈遲激勵下繫統無量綱非線性遲擊動力學方程。以脈遲激勵幅值與易損件加速度響應峰值之比作為繫統無量綱臨界加速度,臨界加速度與無量綱脈遲時間乘積為繫統無量綱臨界速度,引入繫統支承角或頻率比或質量比,構建斜支承繫統易損件破損邊界麯麵。利用龍格-庫塔數值分析方法求解方程,分析討論頻率比、質量比、支承角等因素對易損件破損邊界的影響。研究錶明,增大頻率比、減小繫統支承角、增大質量比等可增加易損件安全區域;隨無量綱脈遲激勵幅值增加,易損件破損區域減小。研究結論為斜支承繫統的設計提供理論依據。
이고필역손건적사지승계통위연구대상,건립구형맥충격려하계통무량강비선성충격동역학방정。이맥충격려폭치여역손건가속도향응봉치지비작위계통무량강림계가속도,림계가속도여무량강맥충시간승적위계통무량강림계속도,인입계통지승각혹빈솔비혹질량비,구건사지승계통역손건파손변계곡면。이용룡격-고탑수치분석방법구해방정,분석토론빈솔비、질량비、지승각등인소대역손건파손변계적영향。연구표명,증대빈솔비、감소계통지승각、증대질량비등가증가역손건안전구역;수무량강맥충격려폭치증가,역손건파손구역감소。연구결론위사지승계통적설계제공이론의거。
The dimensionless nonlinear dynamic equations of tilted support spring system with critical components under the action of rectangular pulse are established. To evaluate damage characteristics of the critical components, a concept of damage boundary surface is proposed. The ratio of the peak pulse acceleration to the maximum shock response acceleration of the critical components is regarded as the dimensionless critical acceleration of the system, and the product of the dimensionless critical acceleration and the dimensionless pulse duration is regarded as the dimensionless critical velocity. The angle of the tilted support, frequency ratio and mass ratio of the system are introduced as three parameters to construct the damage boundary surface for the tilted support system. Runge-Kutta method is used to solve the equations numerically. The influences of frequency ratio, mass ratio, and the tilted angle of the system on the damage boundary surface of the critical components are discussed. The results demonstrate that increasing the frequency ratio, decreasing the angle of the tilted support or increasing the mass ratio can enlarge the safety zone of the critical components, and with the increase of the dimensionless peak pulse acceleration, the damage zone of the critical components will reduce. The numerical results provide an academic foundation for design of tilted support spring systems with critical components.