应用科技
應用科技
응용과기
YING YONG KE JI
2014年
3期
51-54
,共4页
王茂林%叶小红%王洪光%李少远%姜贵林
王茂林%葉小紅%王洪光%李少遠%薑貴林
왕무림%협소홍%왕홍광%리소원%강귀림
粒子群优化算法%BP神经网络%PSO-NN算法%权值训练%电液伺服系统
粒子群優化算法%BP神經網絡%PSO-NN算法%權值訓練%電液伺服繫統
입자군우화산법%BP신경망락%PSO-NN산법%권치훈련%전액사복계통
particle swarm optimization%BP neural network%PSO-NN algorithm%weights training%electro-hydrau-lic servo system
针对非线性、时变等缺陷导致传统的控制器控制效果较差、不适应电液伺服系统的现象,提出了用于电液伺服控制的基于粒子群优化算法对神经网络的权值进行学习训练的PSO-NN算法。结合电液伺服系统实例分析,用MATLAB仿真得到了输入阶跃信号和正弦信号时,PSO-NN算法的输出曲线以及适应度曲线;为了展示PSO-NN算法的效果,用BP算法仿真了对应输入阶跃信号和正弦信号的输出。仿真结果表明:在电液伺服系统的控制中,PSO-NN算法性能优于BP算法,系统输出具有更好的收敛性和对输入的跟随性,从而证明PSO-NN算法对于电液伺服系统的控制是合适并有效的。
針對非線性、時變等缺陷導緻傳統的控製器控製效果較差、不適應電液伺服繫統的現象,提齣瞭用于電液伺服控製的基于粒子群優化算法對神經網絡的權值進行學習訓練的PSO-NN算法。結閤電液伺服繫統實例分析,用MATLAB倣真得到瞭輸入階躍信號和正絃信號時,PSO-NN算法的輸齣麯線以及適應度麯線;為瞭展示PSO-NN算法的效果,用BP算法倣真瞭對應輸入階躍信號和正絃信號的輸齣。倣真結果錶明:在電液伺服繫統的控製中,PSO-NN算法性能優于BP算法,繫統輸齣具有更好的收斂性和對輸入的跟隨性,從而證明PSO-NN算法對于電液伺服繫統的控製是閤適併有效的。
침대비선성、시변등결함도치전통적공제기공제효과교차、불괄응전액사복계통적현상,제출료용우전액사복공제적기우입자군우화산법대신경망락적권치진행학습훈련적PSO-NN산법。결합전액사복계통실례분석,용MATLAB방진득도료수입계약신호화정현신호시,PSO-NN산법적수출곡선이급괄응도곡선;위료전시PSO-NN산법적효과,용BP산법방진료대응수입계약신호화정현신호적수출。방진결과표명:재전액사복계통적공제중,PSO-NN산법성능우우BP산법,계통수출구유경호적수렴성화대수입적근수성,종이증명PSO-NN산법대우전액사복계통적공제시합괄병유효적。
Considering the control nonlinearity and uncertainties and other defects of intelligent control electro -hy-draulic servo system , PSO-NN algorithm is proposed to use particle swarm optimization algorithm to train neural network weights .Combined with a specific instance of electro-hydraulic servo system , when the system input is step and sine signal , the output and fitness curves of PSO-NN algorithm are simulated by using MATLAB software .In order to demonstrate the result of PSO-BP algorithm, BP algorithm is simulated further .The simulation results show that PSO-NN algorithm is superior to the BP algorithm due to the better output convergence and input following per -formance of the electro-hydraulic servo system , and that PSO-NN algorithm is suitable and effective for electro-hy-draulic servo system control .