水动力学研究与进展B辑
水動力學研究與進展B輯
수동역학연구여진전B집
JOURNAL OF HYDRODYNAMICS
2014年
3期
436-446
,共11页
irregular waves%white noise spectrum%unsteady incompressible Reynolds-Average Navier-Stokes(URANS) equations%ship motion response%naoe-FOAM-SJTU solver%OpenFOAM
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, conside-rably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spe-ctrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure.