东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
JOURNAL OF SOUTHEAST UNIVERSITY
2014年
4期
712-716
,共5页
无线传感器网络%协同任务分配%动态联盟%多目标优化%NSGA-Ⅱ
無線傳感器網絡%協同任務分配%動態聯盟%多目標優化%NSGA-Ⅱ
무선전감기망락%협동임무분배%동태련맹%다목표우화%NSGA-Ⅱ
wireless sensor network ( WSN )%collaborative task allocation%dynamic coalition%multi-objective optimization%NSGA ( non-dominated sorting genetic algorithm)-Ⅱ
对无线传感器网络目标跟踪中的协同任务分配机制进行了研究,针对一般任务分配算法中优化目标单一的缺陷,提出了一种基于多目标优化的任务分配算法。首先,建立了基于动态联盟的具有跟踪精度、系统能耗、负载均衡等多个目标参数的优化模型,并采用多目标进化算法NSGA-Ⅱ对模型进行求解;然后,提出了一种基于折中度的决策精选策略,从最优解集中决策出最终的任务分配方案。针对跟踪精度、能耗、负载均衡的仿真结果表明:所提算法可以对多个目标并行优化,较快收敛到全局最优解;与一般任务分配算法相比,该算法可获得更佳的调度结果。
對無線傳感器網絡目標跟蹤中的協同任務分配機製進行瞭研究,針對一般任務分配算法中優化目標單一的缺陷,提齣瞭一種基于多目標優化的任務分配算法。首先,建立瞭基于動態聯盟的具有跟蹤精度、繫統能耗、負載均衡等多箇目標參數的優化模型,併採用多目標進化算法NSGA-Ⅱ對模型進行求解;然後,提齣瞭一種基于摺中度的決策精選策略,從最優解集中決策齣最終的任務分配方案。針對跟蹤精度、能耗、負載均衡的倣真結果錶明:所提算法可以對多箇目標併行優化,較快收斂到全跼最優解;與一般任務分配算法相比,該算法可穫得更佳的調度結果。
대무선전감기망락목표근종중적협동임무분배궤제진행료연구,침대일반임무분배산법중우화목표단일적결함,제출료일충기우다목표우화적임무분배산법。수선,건립료기우동태련맹적구유근종정도、계통능모、부재균형등다개목표삼수적우화모형,병채용다목표진화산법NSGA-Ⅱ대모형진행구해;연후,제출료일충기우절중도적결책정선책략,종최우해집중결책출최종적임무분배방안。침대근종정도、능모、부재균형적방진결과표명:소제산법가이대다개목표병행우화,교쾌수렴도전국최우해;여일반임무분배산법상비,해산법가획득경가적조도결과。
The collaborative task allocation mechanism of target tracking in wireless sensor networks is studied.To solve the problem that the optimization objectives of the general task allocation algo-rithms are single, a new task allocation algorithm based on multi-objective optimization is proposed. First, an optimization model based on dynamic coalition with multiple objectives such as tracking ac-curacy, energy consumption and load balancing is established.And a multi-objective evolutionary algorithm named as NSGA ( non-dominated sorting genetic algorithm)-Ⅱis adopted to solve optimi-zation model.Then, a novel decision-making strategy based on the degree of compromise is presen-ted to give the final task allocation scheme from the set of optimal solutions.The simulation results aiming at the tracking accuracy, energy consumption and load balancing show that the proposed al-gorithm can optimize multi-objectives in parallel and converge to the global optimal solution quickly. Compared with the general task allocation algorithms, the proposed algorithm can obtain better scheduling results.