山东大学学报(工学版)
山東大學學報(工學版)
산동대학학보(공학판)
JOURNAL OF SHANDONG UNIVERSITY(ENGINEERING SCIENCE)
2014年
2期
1-5,11
,共6页
刘力军%马玉梅%孟佳娜
劉力軍%馬玉梅%孟佳娜
류력군%마옥매%맹가나
主分量分析%子分量分析%对偶学习%紧致Stiefel流形
主分量分析%子分量分析%對偶學習%緊緻Stiefel流形
주분량분석%자분량분석%대우학습%긴치Stiefel류형
principal component analysis%minor component analysis%dual learning%compact Stiefel manifold
神经网络在线提取子分量并不成功。基于 Oja-Brockett-Xu 并行神经网络拓扑结构,通过紧致 Stiefel 流形上加权 Rayleigh 商目标函数的优化框架,提出一个通过改变搜索方向并行提取主分量和子分量的自适应对偶学习算法。在正交矩阵群上采用基于右平移不变的 Killing 度量,通过在单位元处基于指数映射的测地线搜索,得到Stiefel 流形上主(子)分量分析的对偶学习算法,提出的算法通过简单的变换步长参数符号,从主分量分析切换至子分量分析,权值矩阵在任意迭代时刻保持正交归一性。数值仿真验证了该算法的有效性。
神經網絡在線提取子分量併不成功。基于 Oja-Brockett-Xu 併行神經網絡拓撲結構,通過緊緻 Stiefel 流形上加權 Rayleigh 商目標函數的優化框架,提齣一箇通過改變搜索方嚮併行提取主分量和子分量的自適應對偶學習算法。在正交矩陣群上採用基于右平移不變的 Killing 度量,通過在單位元處基于指數映射的測地線搜索,得到Stiefel 流形上主(子)分量分析的對偶學習算法,提齣的算法通過簡單的變換步長參數符號,從主分量分析切換至子分量分析,權值矩陣在任意迭代時刻保持正交歸一性。數值倣真驗證瞭該算法的有效性。
신경망락재선제취자분량병불성공。기우 Oja-Brockett-Xu 병행신경망락탁복결구,통과긴치 Stiefel 류형상가권 Rayleigh 상목표함수적우화광가,제출일개통과개변수색방향병행제취주분량화자분량적자괄응대우학습산법。재정교구진군상채용기우우평이불변적 Killing 도량,통과재단위원처기우지수영사적측지선수색,득도Stiefel 류형상주(자)분량분석적대우학습산법,제출적산법통과간단적변환보장삼수부호,종주분량분석절환지자분량분석,권치구진재임의질대시각보지정교귀일성。수치방진험증료해산법적유효성。
Using the same topology as that of Oja-Brockett-Xu parallel neural network,a novel dual purpose adaptive algorithm for principal and minor component extraction was proposed by the optimization framework of a weighted Ray-leigh quotient on the compact Stiefel manifold. By taking the right translation invariant Killing metric on orthogonal ma-trix group and search along the geodesic emanating from identity by means of exponential map,a novel dual learning al-gorithm for principal and minor component analysis was proposed. The proposed algorithm could switch from PCA (Principal Component Analysis)to MCA(Minor Component Analysis)with a simple sign change of its stepsize pa-rameter. Moreover,orthonormality of the weight matrix was guaranteed at any iteration step. The effectiveness of the proposed algorithm was further verified in the section of numerical simulation.