通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2014年
4期
130-140
,共11页
郭通%兰巨龙%李玉峰%陈世文
郭通%蘭巨龍%李玉峰%陳世文
곽통%란거룡%리옥봉%진세문
分数阶达尔文粒子群优化%进化因子%分数阶次%加速系数%变异机制%自适应
分數階達爾文粒子群優化%進化因子%分數階次%加速繫數%變異機製%自適應
분수계체이문입자군우화%진화인자%분수계차%가속계수%변이궤제%자괄응
fractional-order Darwinian particle swarm optimization%evolution factor%fractional-order%acceleration coef-ficients%mutation mechanism%adaptive
针对分数阶达尔文粒子群算法收敛性能依赖于分数阶次α,易陷入局部最优的特点,提出了一种自适应的分数阶达尔文粒子群优化(AFO-DPSO)算法,利用粒子的位置和速度信息来动态调整分数阶次α,并引入自适应的加速系数控制策略和变异处理机制,以获取更优的收敛性能。对几种典型函数的测试结果表明,相比于现有的粒子群算法,所提的 AFO-DPSO 算法的搜索精度、收敛速度和稳定性都有了显著提高,全局寻优能力得到了进一步提高。
針對分數階達爾文粒子群算法收斂性能依賴于分數階次α,易陷入跼部最優的特點,提齣瞭一種自適應的分數階達爾文粒子群優化(AFO-DPSO)算法,利用粒子的位置和速度信息來動態調整分數階次α,併引入自適應的加速繫數控製策略和變異處理機製,以穫取更優的收斂性能。對幾種典型函數的測試結果錶明,相比于現有的粒子群算法,所提的 AFO-DPSO 算法的搜索精度、收斂速度和穩定性都有瞭顯著提高,全跼尋優能力得到瞭進一步提高。
침대분수계체이문입자군산법수렴성능의뢰우분수계차α,역함입국부최우적특점,제출료일충자괄응적분수계체이문입자군우화(AFO-DPSO)산법,이용입자적위치화속도신식래동태조정분수계차α,병인입자괄응적가속계수공제책략화변이처리궤제,이획취경우적수렴성능。대궤충전형함수적측시결과표명,상비우현유적입자군산법,소제적 AFO-DPSO 산법적수색정도、수렴속도화은정성도유료현저제고,전국심우능력득도료진일보제고。
The convergence performance of the fractional-order Darwinian particle swarm optimization (FO-DPSO) al-gorithm depends on the fractional-orderα, and it can easily get trapped in the local optima. To overcome such shortcom-ing, an adaptive fractional-order Darwinian particle swarm optimization (AFO-DPSO) algorithm was proposed. In AFO-DPSO, both particle’s position and velocity information were utilized adequately, together an adaptive acceleration coefficient control strategy and mutation processing mechanism were introduced for better convergence performance. Testing results on several well-known functions demonstrate that AFO-DPSO substantially enhances the performance in terms of convergence speed, solution accuracy and algorithm stability. Compared with PSO, HPSO, DPSO, APSO, FO-PSO, FO-DPSO and NCPSO, the global optimality of AFO-DPSO are greatly improved.