通信学报
通信學報
통신학보
JOURNAL OF CHINA INSTITUTE OF COMMUNICATIONS
2014年
4期
17-24
,共8页
李为%熊春林%王德刚%张晓瀛%魏急波
李為%熊春林%王德剛%張曉瀛%魏急波
리위%웅춘림%왕덕강%장효영%위급파
OFDMA%资源分配%离散粒子群优化%效用函数
OFDMA%資源分配%離散粒子群優化%效用函數
OFDMA%자원분배%리산입자군우화%효용함수
OFDMA%resource allocation%discrete particle swarm optimization%utility function
针对多服务情况下协同OFDMA(orthogonal frequency division multiple access)系统的资源分配问题,在基站和中继单独功率约束条件下,以最大化用户的效用(utility)总和为目标,提出了一种基于多维离散粒子群(MDPSO)的渐进最优资源分配算法。该算法采用多值离散变量来编码粒子位置,并针对多维离散空间构建了新的基于概率信息的粒子速度和位置更新算法,且引入变异操作来克服粒子群算法的早熟问题。此外,还采用了迭代注水法进行最优功率分配。仿真结果表明,所提算法在总效用、吞吐量和公平性上均明显优于已有资源分配算法。
針對多服務情況下協同OFDMA(orthogonal frequency division multiple access)繫統的資源分配問題,在基站和中繼單獨功率約束條件下,以最大化用戶的效用(utility)總和為目標,提齣瞭一種基于多維離散粒子群(MDPSO)的漸進最優資源分配算法。該算法採用多值離散變量來編碼粒子位置,併針對多維離散空間構建瞭新的基于概率信息的粒子速度和位置更新算法,且引入變異操作來剋服粒子群算法的早熟問題。此外,還採用瞭迭代註水法進行最優功率分配。倣真結果錶明,所提算法在總效用、吞吐量和公平性上均明顯優于已有資源分配算法。
침대다복무정황하협동OFDMA(orthogonal frequency division multiple access)계통적자원분배문제,재기참화중계단독공솔약속조건하,이최대화용호적효용(utility)총화위목표,제출료일충기우다유리산입자군(MDPSO)적점진최우자원분배산법。해산법채용다치리산변량래편마입자위치,병침대다유리산공간구건료신적기우개솔신식적입자속도화위치경신산법,차인입변이조작래극복입자군산법적조숙문제。차외,환채용료질대주수법진행최우공솔분배。방진결과표명,소제산법재총효용、탄토량화공평성상균명현우우이유자원분배산법。
The resource allocation problem in cooperative OFDMA systems with mobile stations (MS) on multi-services was investigated. In order to maximize the sum utility of all MS under per-relay power constraint(PPC), an asymptotic optimal resource allocation algorithm based on multi-values discrete particle swarm optimization (MDPSO) was pro-posed. Unlike the traditional discrete particle swarm optimization (DPSO) algorithm, the proposed one denotes the parti-cle position by discrete multi-value variable. Furthermore, new probability based operations for computing particle veloc-ity and updating particle positions were developed, and the mutation of particle positions was also introduced to over-come the premature convergence problem. The proposed MDPSO can also be applied widely to solve the combinatorial optimization problems (COP). Furthermore, iterative waterfilling was used to complete power allocation. Simulation re-sults show that the proposed method achieves higher sum utility of all MSs and higher degree of user fairness than the existing methods.