北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
4期
506-514
,共9页
曹卫华%杜楠%安剑奇%吴敏
曹衛華%杜楠%安劍奇%吳敏
조위화%두남%안검기%오민
高炉%预测%模糊逻辑%最小二乘逼近%支持向量机%信息融合
高爐%預測%模糊邏輯%最小二乘逼近%支持嚮量機%信息融閤
고로%예측%모호라집%최소이승핍근%지지향량궤%신식융합
blast furnaces%prediction%fuzzy logic%least squares approximations%support vector machines%information fusion
针对高炉关键异常炉况悬料难以预测的问题,基于D-S证据理论,提出一种综合模糊专家推理和后验概率最小二乘支持向量机的悬料预测方法。首先,结合高炉生产过程和悬料现象,分析悬料形成的内在机理;其次,通过模糊专家推理提取基于专家规则的主观证据,再通过建立后验概率最小二乘支持向量机模型提取基于数据内在客观规律的客观证据;最后,基于D-S证据理论完成主客观证据融合,实现悬料预测。该方法充分利用专家经验和最小二乘支持向量机的自学习能力,能够提高预测精度。仿真结果表明本文提出的方法有效、准确。
針對高爐關鍵異常爐況懸料難以預測的問題,基于D-S證據理論,提齣一種綜閤模糊專傢推理和後驗概率最小二乘支持嚮量機的懸料預測方法。首先,結閤高爐生產過程和懸料現象,分析懸料形成的內在機理;其次,通過模糊專傢推理提取基于專傢規則的主觀證據,再通過建立後驗概率最小二乘支持嚮量機模型提取基于數據內在客觀規律的客觀證據;最後,基于D-S證據理論完成主客觀證據融閤,實現懸料預測。該方法充分利用專傢經驗和最小二乘支持嚮量機的自學習能力,能夠提高預測精度。倣真結果錶明本文提齣的方法有效、準確。
침대고로관건이상로황현료난이예측적문제,기우D-S증거이론,제출일충종합모호전가추리화후험개솔최소이승지지향량궤적현료예측방법。수선,결합고로생산과정화현료현상,분석현료형성적내재궤리;기차,통과모호전가추리제취기우전가규칙적주관증거,재통과건립후험개솔최소이승지지향량궤모형제취기우수거내재객관규률적객관증거;최후,기우D-S증거이론완성주객관증거융합,실현현료예측。해방법충분이용전가경험화최소이승지지향량궤적자학습능력,능구제고예측정도。방진결과표명본문제출적방법유효、준학。
Aiming at the difficulty of predicting blast furnace hanging, a prediction method was proposed for the hanging based on the D-S evidence theory and in combination with fuzzy expert inference and a posterior probability least squares support vector machine. Firstly, the causes of hanging are obtained by mechanism analysis in consideration of blast furnace operations and hanging phenomena. Secondly, subjective evidences are extracted by fuzzy expert reasoning, while a posterior probability least squares support vector machine model is developed to extract objective evidences. Finally, in order to predict the hanging precisely, the subjective and objec-tive evidences are fused based on the D-S evidence theory, which makes full use of the expertise and the self-learning ability of the least squares support vector machine. Simulation results illustrate that the proposed method can make accurate prediction of the hanging.